Please wait a minute...
金融研究  2024, Vol. 532 Issue (10): 20-38    
  本期目录 | 过刊浏览 | 高级检索 |
数字经济背景下的共同富裕实现机制研究——基于流动人口视角的诠释
余静文, 李媛媛, 谭静, 王勋
武汉大学经济发展研究中心/武汉大学经济与管理学院,湖北武汉 430072;
上海大学经济学院,上海 200044;
北京大学国家发展研究院,北京 100871
Digital Economy and Pathways to Common Prosperity: An Analysis through the Lens of Migrant Populations
YU Jingwen, LI Yuanyuan, TAN Jing, WANG Xun
Center for Economic Development Research, Wuhan University; Economics and Management School, Wuhan University;
Economics School, Shanghai University;
National School of Development, Peking University
下载:  PDF (955KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 流动人口是我国人口的重要组成部分,解决流动人口增收问题对实现共同富裕至关重要。本文基于2011-2018年中国流动人口动态监测调查数据,以“宽带中国”建设事件构建双重差分模型,从流动人口视角探究数字经济助力实现共同富裕的机制和路径。研究发现:(1)数字经济通过促进信息流通、改善企业经营环境,从劳动力供需两端改变流动人口就业模式,进而提高流动人口的收入水平。(2)数字经济发展还发挥了显著的分配效应,不仅缩小了流动人口内部收入差距,还通过缩小流动人口与户籍人口就业模式差距,降低了两者收入的不均等程度。(3)数字经济不仅促进了流动人口的物质富裕,也提高了其社会融合程度。本文对数字经济背景下实现经济高质量发展以及共同富裕相关政策制定具有一定启示意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余静文
李媛媛
谭静
王勋
关键词:  数字经济  共同富裕  流动人口  创业    
Summary:  Migrant populations constitute a crucial component of China's economy and represent both a key focus and challenge in achieving common prosperity. Compared to local residents, migrants face cultural and resource barriers, as well as labor market discrimination due to the hukou system, placing them at a natural disadvantage in securing local employment and entrepreneurship opportunities. A significant proportion of migrants engage in survival-oriented entrepreneurship, which impedes overall income growth and hinders the optimization of income distribution structures. In recent years, China's digital economy has experienced rapid growth, emerging as one of the most dynamic sectors in the country's economic development. This digital transformation has catalyzed transformative changes in production processes, consumption patterns, and business models. Concurrently, it presents both opportunities and challenges for the labor market. While existing literature has examined the impact of the digital economy on residents' income and employment, few studies have explored the intrinsic mechanisms through which the digital economy contributes to common prosperity, particularly from the perspective of migrant populations. This paper aims to investigate the mechanisms and pathways through which the digital economy facilitates common prosperity, focusing on the employment behaviors of migrant populations.
Theoretically, the digital economy alters the employment patterns of migrant populations by facilitating information circulation and enhancing the business environment, thereby impacting the labor supply and demand sides and ultimately elevating the income levels of migrant workers. Further research reveals that the digital economy also exhibits a distributional effect. By reducing the level of information asymmetry between migrant and local populations, it creates job opportunities that are more aligned with the skills and needs of migrant workers, thereby narrowing the gap in employment patterns between these two groups and mitigating income inequality.
Based on the exogenous shock of the “Broadband China” initiative, this paper employs a difference-in-differences model using data from the China Migrants Dynamic Survey from 2011 to 2018. This paper investigates the mechanisms and pathways through which the digital economy contributes to common prosperity, from the perspective of migrant populations. Our findings indicate that the development of the digital economy has significantly boosts migrant incomes. The underlying mechanism appears to be that digital economic development facilitates information flow and creates an improved business environment, enabling migrant populations to access a broader range of employment opportunities. This, in turn, allows them to shift from low-quality, survival-oriented entrepreneurship, leading to income growth. Further analysis reveals significant distributional effects of digital economic development. Not only does it reduce income inequality within the migrant population, but it also narrows the income gap between migrants and residents. Moreover, we find that digital economic development significantly increases migrants' willingness to settle long-term in their host cities.
This study has several policy implications as follows: Firstly, developing digital infrastructure construction enhances information transmission efficiency. Governments should prioritize the development of digital infrastructure such as 5G networks and data centers, with a particular focus on improving network coverage and information transmission efficiency in areas with high concentrations of migrant populations. This will unlock the labor supply potential of migrant workers. Secondly, encouraging enterprises to improve the business environment through digital adoption boosts labor demand. Relevant authorities should increase support for digital transformation in industries, especially labor-intensive sectors, and utilize digital financial tools to reduce borrowing barriers for small and medium-sized enterprises. This will improve the business environment and stimulate labor demand. Thirdly, promoting the deep integration of the digital economy with employment services is essential. On the one hand, efforts should be intensified to provide digital skills training to migrant populations, helping them adapt to the demands of the digital economy. On the other hand, the construction of digital employment service platforms should be strengthened, utilizing financial technology to enhance employment information platforms for migrant workers. This will fully leverage the positive role of digital finance in facilitating the digital upgrade of employment services.
This paper makes three primary contributions to the existing literature: First, we provide novel empirical evidence on the impact of the digital economy on national economic outcomes from the perspective of common prosperity. While previous studies have primarily focused on the effects of the digital economy on residents' income and employment, we extend this analysis by examining the income distribution effects on migrant populations within the framework of common prosperity. Second, we elucidate the intrinsic mechanisms through which the digital economy contributes to common prosperity, specifically considering the characteristics of migrants. Our study explores how the digital economy influences migrants' income through both labor demand and supply channels, thus complementing existing research on the distributional effects of the digital economy on migrants. Third, we enrich the literature on the impact of the digital economy on the social integration of migrant populations. By incorporating settlement intentions into the framework of the digital economy's effects on common prosperity, and combining it with analysis of migrant's income and employment patterns, we provide interconnected empirical evidence on changes in employment modes, income growth, reduced income disparities, and increased settlement intentions. These mutually corroborating findings suggest that the digital economy contributes significantly to the realization of common prosperity.
Keywords:  Digital Economy    Common Prosperity    Migrant    Entrepreneurship
JEL分类号:  D12   E44   G21  
基金资助: * 本文感谢国家自然科学基金面上项目(72373112)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  余静文,经济学博士,副教授,武汉大学经济发展研究中心/经济与管理学院,E-mail:jwyu@whu.edu.cn.   
作者简介:  李媛媛,博士研究生,武汉大学经济与管理学院,E-mail:lilyuyuan@whu.edu.cn.
谭静,经济学博士,副教授,上海大学经济学院,E-mail:jingtan@shu.edu.cn.
王勋,经济学博士,副研究员,北京大学国家发展研究院,E-mail:xunwang@nsd.pku.edu.cn.
引用本文:    
余静文, 李媛媛, 谭静, 王勋. 数字经济背景下的共同富裕实现机制研究——基于流动人口视角的诠释[J]. 金融研究, 2024, 532(10): 20-38.
YU Jingwen, LI Yuanyuan, TAN Jing, WANG Xun. Digital Economy and Pathways to Common Prosperity: An Analysis through the Lens of Migrant Populations. Journal of Financial Research, 2024, 532(10): 20-38.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V532/I10/20
[1]曹希广和邓敏,2024,《电子商务政策与企业家创业精神》,《世界经济》第4期,第31~64页。
[2]郭峰、王靖一、王芳、孔涛、张勋和程志云,2019,《测度中国数字普惠金融发展:指数编制与空间特征》,《经济学(季刊)》第4期,第1401~1418页。
[3]黄群慧、余泳泽和张松林,2019,《互联网发展与制造业生产率提升:内在机制与中国经验》,《中国工业经济》第8期,第5~23页。
[4]李磊、郑妍妍和刘鹏程,2014,《金融发展、职业选择与企业家精神——来自微观调查的证据》,《金融研究》第6期,第193~206页。
[5]戚聿东和褚席,2021,《数字生活的就业效应:内在机制与微观证据》,《财贸经济》第4期,第98~114页。
[6]孙婧芳,2017,《城市劳动力市场中户籍歧视的变化:农民工的就业与工资》,《经济研究》第8期,第171~186页。
[7]田鸽和张勋,2022,《数字经济、非农就业与社会分工》,《管理世界》第5期,第72~84页。
[8]王春超和冯大威,2018,《中国乡—城移民创业行为的决定机制——基于社会关系网的分析视角》,《经济学(季刊)》第1期,第355~382页。
[9]王义中、林溪、李振华和吴卫星,2024,《数字普惠金融助力共同富裕:基于流动性约束视角》,《经济研究》第6期,第49~68页。
[10]张力,2015,《流动人口对城市的经济贡献剖析:以上海为例》,《人口研究》第4期,第57~65页。
[11]张鹏、郝宇彪和陈卫民,2014,《幸福感、社会融合对户籍迁入城市意愿的影响——基于2011年四省市外来人口微观调查数据的经验分析》,《经济评论》第1期,第58~69页。
[12]张勋、万广华、张佳佳和何宗樾,2019,《数字经济、普惠金融与包容性增长》,《经济研究》第8期,第71~86页。
[13]赵涛、张智和梁上坤,2020,《数字经济、创业活跃度与高质量发展——来自中国城市的经验证据》,《管理世界》第10期,第65~76页。
[14]周闯、郑旭刚和许文立,2024,《县域新型城镇化建设与农业转移人口就业质量》,《世界经济》第4期,第212~240页。
[15]周广肃和梁琪,2018,《互联网使用、市场摩擦与家庭风险金融资产投资》,《金融研究》第1期,第84~101页。
[16]周敏慧、Jean-Louis ARCAND和陶然,2017,《企业家精神代际传递与农村迁移人口的城市创业》,《经济研究》第11期,第74~87页。
[17]Borusyak, K., X. Jaravel and J. Spiess, 2024, “Revisiting Event Study Designs: Robust and Efficient Estimation”, Review of Economic Studies, online. doi:10.1093/restud/rdae007.
[18]Jara-Figueroa, C., B. Jun and E. L. Glaeser, 2018, “The Role of Industry-Specific, Occupation-Specific, and Location-Specific Knowledge in the Growth and Survival of New Firms”, The National Academy of Sciences, 115(50), pp.12646~12653.
[19]Knight, J. and L. Yueh, 2004, “Job Mobility of Residents and Migrants in Urban China”, Journal of Comparative Economics, 2004, 32(4), pp.637~660.
[20]Li, P., Y. Lu and J. Wang, 2016, “Does Flattening Government Improve Economic Performance? Evidence from China”, Journal of Development Economics, 123, pp.18~37.
[21]Sun, L. Y. and S. Abraham, 2021, “Estimating Dynamic Treatment Effects in Event Studies with Heterogeneous Treatment Effects”, Journal of Econometrics, 225, pp.175~199.
[22]Wooldridge, J., 2003, “Cluster-Sample Methods in Applied Econometrics”, American Economic Review, 93(1), pp.133-138.
[23]Wooldridge, J., 2021, “Two-Way Fixed Effects, the Two-Way Mundlak Regression, and Difference-in-Differences Estimators”, SSRN Working Paper, No. 3906345.
[24]Zhang, C., X. Tian., X. Yang, B. Xu and Q. Li, 2023, “The Iron-out Effect of Digital Economy: A Discussion on Gender Wage Rate Discrimination for Working Hours”, Journal of Business Research, 156(2-3), pp.113399.
[1] 孙伟增, 李怡凡, 经菠. 社会流动性与城市创业活力:一个倒U形的解释[J]. 金融研究, 2024, 531(9): 189-206.
[2] 沈艳, 江弘毅, 胡诗云, 赵家琪, 黄卓. 数字金融支持高质量发展:理论、机制和证据[J]. 金融研究, 2024, 529(7): 20-39.
[3] 周利, 吴雨, 易行健. 数字经济发展、资产配置效率与居民财产性收入——来自中国家庭微观调查数据的证据[J]. 金融研究, 2024, 528(6): 151-168.
[4] 孙伟增, 王诗勇, 王洪卫. 住房保障制度、流动人口家庭消费与社会融入——基于公租房准入条件的模糊断点回归分析[J]. 金融研究, 2024, 526(4): 169-187.
[5] 黄祖辉, 宋文豪, 叶春辉. 数字普惠金融对新型农业经营主体创立的影响与机理——来自中国1845个县域的经验证据[J]. 金融研究, 2023, 514(4): 92-110.
[6] 田鸽, 黄海, 张勋. 数字金融与创业高质量发展:来自中国的证据[J]. 金融研究, 2023, 513(3): 74-92.
[7] 刘珺, 唐建伟, 周边, 鄂永健, 王运良. 数字经济如何影响中国通货膨胀?——基于作用机理和动态特征的实证分析[J]. 金融研究, 2023, 513(3): 1-19.
[8] 方明月, 聂辉华, 阮睿, 沈昕毅. 企业数字化转型与经济政策不确定性感知[J]. 金融研究, 2023, 512(2): 21-39.
[9] 潘妍, 余泳泽. 社会信用体系建设促进了农户创业吗?——基于失信信息公开视角[J]. 金融研究, 2023, 522(12): 169-187.
[10] 孙三百, 张青萍, 李冉. 中国财富机会不平等的测度与源泉识别——兼论共同富裕的路径选择[J]. 金融研究, 2023, 521(11): 97-114.
[11] 魏浩, 杨明明, 李实. 共同富裕、贸易开放与中国的代际收入流动性[J]. 金融研究, 2022, 506(8): 74-93.
[12] 王正位, 李梦云, 廖理, 石永彬. 人口老龄化与区域创业水平——基于启信宝创业大数据的研究[J]. 金融研究, 2022, 500(2): 80-97.
[13] 顾明, 曾力, 陈海强, 倪博. 交易限制与股票市场定价效率——基于创业板涨跌幅限制放宽的准自然实验研究[J]. 金融研究, 2022, 509(11): 189-206.
[14] 廖红君, 樊纲治, 弋代春. 关系型借贷视角下购房融资方式与家庭创业行为——基于2017年中国家庭金融调查的实证研究[J]. 金融研究, 2020, 481(7): 153-171.
[15] 田子方. 集体主义与居民家庭消费——来自中国的经验发现[J]. 金融研究, 2020, 479(5): 132-150.
[1] 罗炜, 何顶, 洪莉莎, 常国珍. 媒体报道可以预测创业企业的发展前景吗?[J]. 金融研究, 2017, 446(8): 177 -191 .
[2] 钱水土, 陈鑫云. 农村信用社区域性风险影响因素分析——基于面板数据Logit模型[J]. 金融研究, 2016, 435(9): 115 -130 .
[3] 白鹤祥, 刘社芳, 罗小伟, 刘蕾蕾, 郝威亚. 基于房地产市场的我国系统性金融风险测度与预警研究[J]. 金融研究, 2020, 482(8): 54 -73 .
[4] 陆婷, 徐奇渊. 中国企业杠杆:一个周期性问题?[J]. 金融研究, 2021, 488(2): 1 -19 .
[5] 宣扬, 靳庆鲁, 李晓雪. 利率市场化、信贷资源配置与民营企业增长期权价值——基于贷款利率上、下限放开的准自然实验证据[J]. 金融研究, 2022, 503(5): 76 -94 .
[6] 罗长远, 曾帅. “一带一路”建设对要素配置效率的影响——基于中国上市工业企业的研究[J]. 金融研究, 2022, 505(7): 154 -170 .
[7] 余靖雯, 郭凯明, 麦东仁. 中国隔代抚养文化、生育年龄选择与人口生育率[J]. 金融研究, 2023, 518(8): 189 -206 .
[8] 李政, 李薇, 李丽雯. 美国三类不确定性冲击、生产网络传导与中国行业尾部风险[J]. 金融研究, 2024, 530(8): 39 -57 .
[9] 顾明, 任蓝翔, 李东旭. 政策规范、同群效应与资本市场震慑——来自A股上市公司随意停牌的证据[J]. 金融研究, 2024, 530(8): 95 -112 .
[10] 范志勇, 安戈洋, 章永辉. 银行间市场短端利率波动与货币政策传导效率——基于利率互换市场高频识别与局部投影方法[J]. 金融研究, 2024, 531(9): 1 -19 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1