Please wait a minute...
金融研究  2023, Vol. 522 Issue (12): 188-206    
  本期目录 | 过刊浏览 | 高级检索 |
银行家问卷调查与信贷周期理论的再检验
刘岩, 赵雪晴
武汉大学经济发展研究中心,湖北武汉 430072;
北京大学经济学院,北京 100871
Bank Lending Surveys and Credit Cycles Revisited
LIU Yan, ZHAO Xueqing
Economics and Management School, Wuhan University; School of Economics, Peking University
下载:  PDF (1016KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 信贷周期理论认为,金融体系信贷供给扩张造成的宏观杠杆率上升,将导致未来总产出紧缩甚至经济危机。本文收集了42国央行的银行家问卷调查数据,利用其中银行贷款标准指标测度信贷供给情况,并将其作为宏观杠杆率的工具变量,从而在控制内生性偏误的基础上,对信贷周期理论进行再检验。主要发现:第一,信贷标准放松所带来的私人部门宏观杠杆率增速每提高1%,未来1年的总产出增速将下降0.23-0.43%,5年的平均增速将下降0.15%左右;且该效应由非政策性因素带来的信贷标准放松所导致。第二,信贷供给驱动的家庭部门杠杆上升在短期会推动总产出上升,但长期会引起总产出下降;而企业部门杠杆上升则会更快地引起持续的产出下降。第三,新兴市场经济体信贷周期现象更突出,且集中在企业部门杠杆变动。本研究表明,保持信贷标准及信贷供给稳定,是实现经济平稳运行的必要条件,新兴市场经济体尤其要警惕企业部门信贷驱动下杠杆率快速上升带来的风险。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘岩
赵雪晴
关键词:  信贷周期  信贷标准  宏观杠杆率  总产出    
Summary:  The 2008 global financial crisis underscores the risks of high macroeconomic leverage and highlights the classic credit-driven financial cycle theories of Kindleberger (1978) and Minsky (1977), fueling extensive theoretical and empirical research post-crisis (Eggertsson and Krugman, 2012; Schularick and Taylor, 2012). Concurrently, China witnessed a significant rise in its macro leverage ratio, drawing concentrated policy attention. In 2015, China embarked on a deleveraging policy, and in recent years, it has implemented a series of measures to curb the growth of leverage. However, stimulus policies due to the COVID-19 pandemic in 2020 have reignited concerns about macro leverage risks. Global liquidity stimulus policies increase macro leverage ratios, raising a critical, unresolved question about their impact on the global economy.
The core of credit-driven financial cycle theory pertains to the excessive flow of credit from the financial sector to non-financial sectors, creating investment surpluses and asset bubbles. This illusory prosperity fails to generate real output, leading to defaults, asset crashes, and economic downturns through Fisher's (1933) debt-deflation mechanism. The theory predicts that credit supply-induced increases in the macro leverage ratio (credit stock/total output) result in reduced future output. Although the literature confirms a negative relationship between macro leverage and future total output, it fails to establish causality, making it unable to provide credible validation of debt-driven financial cycle theory. Understanding the dynamics of changes in leverage is crucial for devising precise macro leverage management policies. The key mechanism of debt-driven financial cycles is excessive credit supply, marking supply-side-driven leverage changes as particularly hazardous. Accurately identifying supply-side credit effects on future output is vital for optimal macro policy decisions. In this study, we manually collect a novel cross-country dataset (from the Bank Lending Survey), covering quarterly data for 42 countries from 1994 to 2019. We utilize bank lending standards to measure credit supply directly, retest credit cycle theory, and offer policy insights for emerging markets such as China. All of this work has important theoretical value and practical significance.
First, using the standard two-stage least squares method, we assess how supply-driven sectoral leverage influences total output. We note that a 1% increase in private sector macro leverage due to relaxed credit standards leads to a 0.23%-0.43% decline in total output growth over the next year, with a 5-year average reduction of about 0.15%. Second, by differentiating between the corporate and household sectors, our results show that an increase in non-financial corporate leverage driven by credit supply reduces future total output growth, while household leverage affects economic growth positively in the short term but negatively in the long term. These findings persist even when cyclical factors in credit standards are considered. Third, our findings indicate that stimulative policies, such as the aggregate monetary policy, do not directly lead to sectoral leverage increases or negatively affect future total output growth, thus mitigating concerns about leverage changes due to countercyclical stimulus policies. Lastly, distinguishing between developed and emerging market economies, we observe that in emerging markets, a rapid increase in non-financial corporate sector leverage significantly and persistently dampens total output growth, indicating potential biases if macro leverage management policies in emerging markets directly draw from findings based on developed economy samples.
We make three key contributions. First, we systematically compile Bank Lending Survey data from 42 countries, detailing information such as credit standards for effective use in academic and policy research and thereby enriching the literature on banking and credit. Second, we effectively address the prominent endogeneity issues in the credit cycle literature, providing more reliable validation of debt-driven financial cycle theory. Finally, our findings emphasize the need to maintain stable credit standards and supplies for economic stability, particularly alerting emerging economies to the risks of rapid leverage increases driven by corporate sector credit. In summary, our conclusions provide credible insights for leverage management policies, particularly in emerging market countries such as China.
Keywords:  Credit Cycles    Credit Standards    Macro Leverage    Aggregate Output
JEL分类号:  E32   E51   G21  
基金资助: * 本文感谢国家自然科学基金(72173091)与国家社会科学基金重大项目(20&ZD105)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  刘 岩,经济学博士,副教授,武汉大学经济发展研究中心,E-mail:yanliu.ems@whu.edu.cn.   
作者简介:  赵雪晴,博士研究生,北京大学经济学院,E-mail:xueqingzhao@stu.pku.edu.cn.
引用本文:    
刘岩, 赵雪晴. 银行家问卷调查与信贷周期理论的再检验[J]. 金融研究, 2023, 522(12): 188-206.
LIU Yan, ZHAO Xueqing. Bank Lending Surveys and Credit Cycles Revisited. Journal of Financial Research, 2023, 522(12): 188-206.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2023/V522/I12/188
[1] 陈雨露、马勇和阮卓阳,2016,《金融周期和金融波动如何影响经济增长与金融稳定?》,《金融研究》第2期,第1~22页。
[2] 苟琴、耿亚莹和谭小芬,2022,《跨境资本涌入与非金融企业杠杆率》,《世界经济》第4期,第54~79页。
[3] 黄宪、刘岩和童韵洁,2019,《金融发展对经济增长的促进作用及持续性研究——基于英美、德国、法国法系的比较视角》,《金融研究》第12期,第147~168页。
[4] 纪敏、严宝玉和李宏瑾,2017,《杠杆率结构、水平和金融稳定——理论分析框架和中国经验》,《金融研究》第2期,第11~25页。
[5] 纪洋、葛婷婷、边文龙和黄益平,2021,《杠杆增速、部门差异与金融危机——“结构性去杠杆”的实证分析与我国杠杆政策的讨论》,《经济学(季刊)》第3期,第843~862页。
[6] 金鹏辉、张翔和高峰,2014,《银行过度风险承担及货币政策与逆周期资本调节的配合》,《经济研究》第6期,第73~85页。
[7] 刘晓光、刘元春和王健,2018,《杠杆率、经济增长与衰退》,《中国社会科学》第6期,第50~70+205页。
[8] 马勇和陈雨露,2017,《金融杠杆,杠杆波动与经济增长》,《经济研究》第6期,第31~45页。
[9] 谭小芬和张文婧,2021,《财政分权、地方政府行为与企业杠杆率分化》,《经济研究》第6期,第76~92页。
[10] 易纲,2020,《再论中国金融资产结构及政策含义》,《经济研究》第3期,第4~17页。
[11] 中国人民银行杠杆率研究课题组,2015,《中国经济杠杆率水平评估及潜在风险研究》,《金融监管研究》第5期,第23~38页。
[12] Arcand, J. L., E. Berkes and U. Panizza, 2015, “Too Much Finance?” Journal of Economic Growth, 20(2), pp.105~148.
[13] Bassett, W. F., M. B. Chosak, J. C. Driscoll and E. Zakrajšek, 2014, “Changes in Bank Lending Standards and the Macroeconomy”, Journal of Monetary Economics, 62, pp.23~40.
[14] Bezemer, D., and L. Zhang, 2019, “Credit Composition and the Severity of Post-Crisis Recessions”, Journal of Financial Stability, 42, pp.52~66.
[15] Cecchetti, S. G., M. S. Mohanty and F. Zampolli, 2011, “The Real Effects of Debt”, Jackson Hole Economic Symposium Conference Proceedings, pp.145~196.
[16] Ciccarelli, M., A. Maddaloni and J. L. Peydró, 2015, “Trusting the Bankers: A New Look at the Credit Channel of Monetary Policy”, Review of Economic Dynamics, 18(4), pp.979~1002.
[17] Eberhardt, M., and A. F. Presbitero, 2015, “Public Debt and Growth: Heterogeneity and Non-Linearity”, Journal of International Economics, 97(1), pp.45-58.
[18] Eggertsson, G. B., and P. Krugman, 2012, “Debt, Deleveraging, and the Liquidity Trap: A Fisher-Minsky-Koo Approach”, Quarterly Journal of Economics, 127(3), pp.1469~1513.
[19] Del Giovane, P., G. Eramo and A. Nobili, 2011, “Disentangling Demand and Supply in Credit Developments: A Survey-Based Analysis for Italy”, Journal of Banking & Finance, 35(10), pp.2719~2732.
[20] Fisher, I., 1933, “The Debt-Deflation Theory of Great Depressions”, Econometrica, 1(4), pp.337~357.
[21] Gopinath, G., Ş. Kalemli-Özcan, L. Karabarbounis and C. Villegas-Sanchez, 2017, “Capital Allocation and Productivity in South Europe”, The Quarterly Journal of Economics, 132(4), pp.1915~1967.
[22] Jiménez, G., S. Ongena, J. L. Peydró and J. Saurina, 2012, “Credit Supply and Monetary Policy: Identifying the Bank Balance-Sheet Channel with Loan Applications”, American Economic Review 102(5), pp.2301~2326.
[23] Jordà, Ò., M. Kornejew, M. Schularick and A. M. Taylor, 2022, “Zombies at Large? Corporate Debt Overhang and the Macroeconomy”, Review of Financial Studies, 35(10), pp.4561~4586.
[24] Jordà, Ò., M. Schularick and A. M. Taylor, 2017, “Macrofinancial History and the New Business Cycle Facts”, NBER Macroeconomics Annual, 31(1), pp.213~263.
[25] Justiniano, A., G. E. Primiceri and A. Tambalotti, 2011, “Investment Shocks and the Relative Price of Investment”, Review of Economic Dynamics, 14(1), pp.102~121.
[26] Kalemli-Ozcan, S., L. Laeven and D. Moreno, 2022, “Debt Overhang, Rollover Risk, and Corporate Investment: Evidence from the European Crisis”, Journal of the European Economic Association, 20(6), pp.2353~2395.
[27] Kindleberger, C. P.,1978, Manias, Panics, and Crashes: A History of Financial Crises, New York, NY: Basic Books.
[28] Lown, C. and D. P. Morgan, 2006, “The Credit Cycle and the Business Cycle: New Findings Using the Loan Officer Opinion Survey”, Journal of Money, Credit and Banking, 38(6), pp.1575~1597.
[29] Liu, Y., and X. Zhao, 2023, “On the Factors Driving Bank Lending Standards: Global Evidence from Bank Lending Surveys”, Economics Letters, 233, p.111431.
[30] Mendoza, E. G. and M. E. Terrones, 2008, “An Anatomy of Credit Booms: Evidence from Macro Aggregates and Micro Data,” NBER Working Paper. No.14049.
[31] Mian, A., A. Sufi and E. Verner, 2017, “Household Debt and Business Cycles Worldwide”, Quarterly Journal of Economics, 132(4), pp.1755~1817.
[32] Minsky, H. P., 1977. “The Financial Instability Hypothesis: An Interpretation of Keynes and an Alternative to ‘Standard' Theory”, Challenge, 20, pp.20~27.
[33] Müller, K., and E. Verner, 2024. “Credit Allocation and Macroeconomic Fluctuations”, Review of Economics Studies, forthcoming.
[34] Philippon, T., 2015, “Has the US Finance Industry Become Less Efficient? On the Theory and Measurement of Financial Intermediation”, American Economic Review, 105(4),pp.1408~1438.
[35] Schularick, M. and A. M. Taylor, 2012, “Credit Booms Gone Bust: Monetary Policy, Leverage Cycles, and Financial Crises, 1870-2008”, American Economic Review, 102(2), pp.1029~1061.
[36] Van der Veer, K. J. M. and M. M. Hoeberichts, 2016, “The Level Effect of Bank Lending Standards on Business Lending”, Journal of Banking & Finance, 66, pp.79~88.
[1] 梅冬州, 宋佳馨, 马振宇. 美联储货币政策紧缩的跨国异质性影响研究[J]. 金融研究, 2023, 517(7): 1-20.
[2] 司登奎, 李小林, 孔东民, 江春. 利率市场化能降低企业营运风险吗?——基于融资约束和企业金融化的双重视角[J]. 金融研究, 2023, 511(1): 113-130.
[3] 祝梓翔, 高然. 通胀—增长权衡和中国菲利普斯曲线的平坦化[J]. 金融研究, 2022, 509(11): 1-20.
[4] 司登奎, 李颖佳, 李小林. 中国银行业竞争与非金融企业影子银行化[J]. 金融研究, 2022, 506(8): 171-188.
[5] 王遥, 王文蔚. 环境灾害冲击对银行违约率的影响效应研究:理论与实证分析[J]. 金融研究, 2021, 498(12): 38-56.
[6] 王霞, 司诺, 宋涛. 中国季度GDP的即时预测与混频分析[J]. 金融研究, 2021, 494(8): 22-41.
[7] 吴立元, 赵扶扬, 王忏, 龚六堂. 美国货币政策溢出效应、中国资产价格波动与资本账户管理[J]. 金融研究, 2021, 493(7): 77-94.
[8] 陆婷, 徐奇渊. 中国企业杠杆:一个周期性问题?[J]. 金融研究, 2021, 488(2): 1-19.
[9] 尚玉皇, 赵芮, 董青马. 混频数据信息下的时变货币政策传导行为研究——基于混频 TVP-FAVAR模型[J]. 金融研究, 2021, 487(1): 13-30.
[10] 梅冬州, 温兴春, 王思卿. 房价调控、地方政府债务与宏观经济波动[J]. 金融研究, 2021, 487(1): 31-50.
[11] 隋建利, 刘碧莹. SDR货币篮子中人民币的国际化定位——汇率市场波动传染与波动聚类的实时甄别[J]. 金融研究, 2020, 485(11): 1-20.
[12] 庄子罐, 贾红静, 刘鼎铭. 居民风险偏好与中国货币政策的宏观经济效应——基于DSGE模型的数量分析[J]. 金融研究, 2020, 483(9): 40-58.
[13] 侯成琪, 黄彤彤. 流动性、银行间市场摩擦与借贷便利类货币政策工具[J]. 金融研究, 2020, 483(9): 78-96.
[14] 郝大鹏, 王博, 李力. 美联储政策变化、国际资本流动与宏观经济波动[J]. 金融研究, 2020, 481(7): 38-56.
[15] 陆磊, 刘学. 违约与杠杆周期——一个带有救助的金融加速器模型[J]. 金融研究, 2020, 479(5): 1-20.
[1] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[2] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[3] 李万福, 杜静, 张怀. 创新补助究竟有没有激励企业创新自主投资——来自中国上市公司的新证据[J]. 金融研究, 2017, 448(10): 130 -145 .
[4] 李丹, 庞晓波, 方红生. 财政空间与中国政府债务可持续性[J]. 金融研究, 2017, 448(10): 1 -17 .
[5] 李少昆. 美国货币政策是全球发展中经济体外汇储备影响因素吗?[J]. 金融研究, 2017, 448(10): 68 -82 .
[6] 祝继高, 李天时, 尤可畅. 房地产价格波动与商业银行贷款损失准备——基于中国城市商业银行的实证研究[J]. 金融研究, 2017, 447(9): 83 -98 .
[7] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[8] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[9] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[10] 金宇超, 靳庆鲁, 李晓雪. 资本市场注意力总量是稀缺资源吗?[J]. 金融研究, 2017, 448(10): 162 -177 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1