Please wait a minute...
金融研究  2023, Vol. 518 Issue (8): 170-188    
  本期目录 | 过刊浏览 | 高级检索 |
基于理性预期均衡的金融期货定价研究:信息驱动还是套利驱动?
陈彬彬, 刘善存, 张强, 曾庆铎
山东财经大学金融学院,山东济南 250014;
北京航空航天大学经济管理学院,北京 100191;
北京化工大学经济管理学院,北京 100029;
广东工业大学经济学院,广东广州 510520
Research on Financial Futures Pricing in a Rational Expectations Equilibrium: Information Driven or Arbitrage Driven?
CHEN Binbin, LIU Shancun, ZHANG Qiang, ZENG Qingduo
School of Finance, Shandong University of Finance and Economics;
School of Economics and Management, Beihang University;
School of Economics and Management, Beijing University of Chemical Technology;
School of Economics, Guangdong University of Technology
下载:  PDF (1083KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 期货市场是投资者获取信息的重要渠道之一,其价格发现功能有利于提高金融市场有效性、降低信息搜寻成本、改善资本配置效率。本文在理性预期均衡框架下构建包含知情交易者、跨市场套利者和噪声交易者的金融期货定价模型,探究影响现货和期货价格发现功能的市场因素、厘清两市场中不同类型投资者之间的博弈过程、揭示期货价格聚集私人信息的微观机制。研究发现:有限套利市场中,期货的价格同时受知情交易者、噪声交易者和套利者的影响,不一定满足持有成本理论;期货的价格发现功能由知情交易和噪声交易决定,与套利行为无关;期货市场的私人信息精度高于现货时,期货的价格发现水平与交割阶段现货的知情交易程度正相关,套利交易对某个资产价格的相对冲击程度与该资产的价格发现水平负相关。本文有助于监管者、交易机构和投资者从微观视角理解金融期货的价格发现功能,对完善期货市场制度、丰富期货产品、提高衍生品市场效率具有指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈彬彬
刘善存
张强
曾庆铎
关键词:  跨市场套利  期现货价差  价格发现  期货定价  理性预期均衡    
Summary:  The futures market plays a fundamental role in asset price discovery. Improving the efficiency of asset price discovery would help enhance financial market efficiency, reduce information acquisition costs for investors, and promote finance's positive effects on the real economy. China's Futures and Derivatives Law, which came into effect in 2022, indicates the importance of developing the futures market to raise its price discovery function. The cost-of-carry model, a classical futures pricing model, reveals the relationship between futures and spot prices only when there are infinite arbitrageurs. However, this model is not suitable when dealing with limited arbitrageurs and does not illustrate the micro-mechanism of information aggregation in the futures market. Although empirical research indicates that price discovery efficiency in the financial futures market is higher than that in the spot market, a robust theoretical foundation for this relationship is lacking. Thus, we develop a futures pricing model, where informed traders, cross-market arbitrageurs, and noise traders trade within a rational expectations equilibrium framework, to investigate the pricing outcomes of spot and futures markets, characterize the interactions between different types of investors, and uncover the micro-mechanisms of information aggregation in the futures market, the determinants of the price discovery function of spot and futures markets.
Given that futures delivery is earlier than the liquidation of spot in the real financial world, we assume that the spot is traded in each period and futures are only traded in the first period in a two-period trading model. The spot is liquidated after the end of the second period and the futures contract is delivered at the equilibrium price of spot in the second period. Informed traders and arbitrageurs exist in the spot and futures markets, but only arbitrageurs can trade across markets. Under these assumptions, we first solve the partial market equilibrium without cross-market arbitrageurs. In this equilibrium, we analyze how delivery risk affects informed trading behaviors in the futures markets and how private information is incorporated into futures prices. In addition, we determine how spot-futures spread occurs from the perspective of information structure and inventory risk. Subsequently, we solve the overall market equilibrium by considering the cross-market arbitrageurs' strategy. In the overall equilibrium, we examine the factors determining arbitrage intensity, the impact of the number of arbitrageurs on the spot-futures spread, and the relationship between arbitrage trading and price discovery efficiency. Finally, we empirically test the model's findings by analyzing the impact of COVID-19 on the price discovery of CSI 300 index futures in China.
This study yields the following results. First, the price discovery of futures is determined by informed traders and noise traders rather than by arbitrageurs. The price discovery level of spot is better than that of futures when the precision of private information and noise trading in the two market is equal. Second, the greater the information aggregation efficiency of a spot at the delivery stage of the futures, the higher the price discovery level of futures. Third, when private information in the futures market is more precise than that in the spot market, the liquidity of futures is positively related to its price discovery and the relative impact of arbitrage trading on asset prices is negatively correlated with its price discovery efficiency. Finally, we determine that COVID-19 reduces the price discovery function of stock index futures due to increased investor concerns regarding short-term stock index volatility.
This paper contributes to the futures pricing literature in three aspects. First, by incorporating informed traders and noise traders, we construct a model that is more suitable for analyzing the price discovery function of futures within the framework of the rational expectations equilibrium. This model provides a theoretical basis for previous empirical analyses and suggests avenues for further research. Second, many existing studies assume no-arbitrage exogenously, which limits their ability to analyze the differential impact of arbitrage trading on spot and futures prices and the resulting price discovery efficiency. We address this limitation by endogenizing arbitrage strategies. Third, we empirically examine how investors' expectations about the underlying asset's price volatility affect the price discovery level of futures, providing an empirical basis for our theoretical model. Based on these findings, future research could explore the choices of informed traders between trading in the spot market or futures market and investigate investors' decisions to roll over their positions on the delivery date to further examine futures pricing.
Keywords:  Cross Market Arbitrage    Spot-futures Spread    Price Discovery    Futures Pricing    Rational Expectations Equilibrium
JEL分类号:  D40   D82   G14  
基金资助: * 本文感谢教育部人文社会科学研究青年基金项目(22YJCZH013)、山东省自然科学基金青年项目(ZR2020QG026)、广东省基础与应用基础研究基金项目(2021A1515110469)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  张 强,管理学博士,教授,北京化工大学经济管理学院,E-mail:jqx_zhq@buaa.edu.cn.   
作者简介:  陈彬彬,管理学博士,副教授,山东财经大学金融学院,E-mail:chenbin925@126.com.
刘善存,管理学博士,教授,北京航空航天大学经济管理学院,E-mail:liushancun@buaa.edu.cn.
曾庆铎,管理学博士,讲师,广东工业大学经济学院,E-mail:zengqingduo@foxmail.com.
引用本文:    
陈彬彬, 刘善存, 张强, 曾庆铎. 基于理性预期均衡的金融期货定价研究:信息驱动还是套利驱动?[J]. 金融研究, 2023, 518(8): 170-188.
CHEN Binbin, LIU Shancun, ZHANG Qiang, ZENG Qingduo. Research on Financial Futures Pricing in a Rational Expectations Equilibrium: Information Driven or Arbitrage Driven?. Journal of Financial Research, 2023, 518(8): 170-188.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2023/V518/I8/170
[1]陈其安、张慧和陈抒妤,2020,《股指期货交易加剧了中国股票市场波动性吗?——基于投资者结构的理论和实证研究》,《中国管理科学》第4期,第1~13页。
[2]陈蓉和郑振龙,2008,《无偏估计、价格发现与期货市场效率——期货与现货价格关系》,《系统工程理论与实践》第8期,第2~11页。
[3]程展兴和剡亮亮,2013,《非同步交易、信息传导与市场效率——基于我国股指期货与现货的研究》,《金融研究》第11期,第154~166页。
[4]李枫和李济广,2019,《金融衍生品市场不具有价格发现功能》,《南方金融》第3期,第23~32页。
[5]陶利斌、潘婉彬和黄筠哲,2014,《沪深300股指期货价格发现能力的变化及其决定因素》,《金融研究》第4期,第128~142页。
[6]许荣和刘成立,2019,《限制交易政策如何影响期现关系?——对股指期货价格发现功能的实证检验》,《金融研究》第2期,第154~168页。
[7]杨世超、刘善存和张强,2021,《投资者的交易频率与市场质量》,《系统工程理论与实践》第9期,第2271~2283页。
[8]张劲帆、汤莹玮和刚健华等,2019,《中国利率市场的价格发现——对国债现货、期货以及利率互换市场的研究》,《金融研究》第1期,第19~34页。
[9]郑振龙和陈蓉,2020,《金融工程〈第五版〉》,高等教育出版社,第1~23页。
[10]Amihud, Yakov, 2002, “Illiquidity and Stock Returns: Cross-Section and Time-Series Effects”, Journal of Financial Markets 5(1): 31~56.
[11]Bialkowski, Jedrzej, and Devmali Perera, 2019, “Stock Index Futures Arbitrage: Evidence from a Meta-Analysis”, International Review of Financial Analysis 61(1): 284~294.
[12]Black, Fischer, 1975, “Fact and Fantasy in the Use of Options”, Financial Analysts Journal 31(4): 36~72.
[13]Bohl, Martin T, Christian A Salm, and Michael Schuppli, 2011, “Price Discovery and Investor Structure in Stock Index Futures”, Journal of Futures Markets 31(3): 282~306.
[14]Brunnermeier, Markus K., and Lasse Heje Pedersen, 2009, “Market Liquidity and Funding Liquidity”, The Review of Financial Studies 22(6): 2201~2238.
[15]Cespa, Giovanni, 2002, “Short-Term Investment and Equilibrium Multiplicity”, European Economic Review 46(9): 1645~1670.
[16]Cespa, Giovanni, and Thierry Foucault, 2014, “Illiquidity Contagion and Liquidity Crashes”, The Review of Financial Studies 27(6): 1615~1660.
[17]Cespa, Giovanni, and Xavier Vives, 2012, “Dynamic Trading and Asset Prices: Keynes vs. Hayek”, The Review of Economic Studies 79(2): 539~580.
[18]Chen, Yu-Lun, Yen-Hsien Lee, Robin K. Chou, and Ya-Kai Chang, 2021, “Arbitrage Trading and Price Discovery of the Regular and Mini Taiwan Stock Index Futures”, Journal of Futures Markets 41(6): 926~948.
[19]Cornell, Bradford, and Kenneth R. French, 1983, “The Pricing of Stock Index Futures”, Journal of Futures Markets 3(1): 1~14.
[20]Curran, Edward, Jack Hunt, and Vito Mollica, 2020, “Trading Protocols and Price Discovery: Implicit Transaction Costs in Indian Single Stock Futures”, Journal of Futures Markets 40(11): 1793~1806.
[21]Fleming, Jeff, and Barbara Ostdiek, 1996, “Trading Costs and the Relative Rates of Price Discovery in Stock, Futures, and Option Markets”, Journal of Futures Markets 16(4): 353~387.
[22]Frino, Alex, Michael Garcia, and Zeyang Zhou, 2020, “Impact of Algorithmic Trading on Speed of Adjustment to New Information: Evidence from Interest Rate Derivatives”, Journal of Futures Markets 40(5): 749~760.
[23]Fung, Joseph K.W., and Yiuman Tse, 2008, “Efficiency of Single-Stock Futures: An Intraday Analysis”, Journal of Futures Markets 28(6): 518~536.
[24]Glover, Kristoffer, and Hardy Hulley, 2022, “Financially Constrained Index Futures Arbitrage”, Journal of Futures Markets 42(9): 1688~1703.
[25]Goldstein, Itay, and Liyan Yang, 2015, “Information Diversity and Complementarities in Trading and Information Acquisition”, The Journal of Finance 70(4): 1723~1765.
[26]Hasbrouck, Joel, 1995, “One Security, Many Markets: Determining the Contributions to Price Discovery”, The Journal of Finance 50(4): 1175~1199.
[27]Hasbrouck, Joel, 2003, “Intraday Price Formation in U.S. Equity Index Markets”, The Journal of Finance 58(6): 2375~2400.
[28]Kyle, Albert S., 1985, “Continuous Auctions and Insider Trading”, Econometrica 53(6): 1315~1335.
[29]Kumar, Umesh, and Yiuman Tse, 2009, “Single-Stock Futures: Evidence from the Indian Securities Market”, Global Finance Journal 20(3): 220~234.
[30]Lin, Chu-Bin, Robin K. Chou, and George H. K. Wang, 2018, “Investor Sentiment and Price Discovery: Evidence from the Pricing Dynamics between the Futures and Spot Markets”, Journal of Banking & Finance 90(5): 17~31.
[31]Ma, Chaoqun, Ru Xiao, and Xianhua Mi, 2022, “Measuring the Dynamic Lead-Lag Relationship between the Cash Market and Stock Index Futures Market”, Finance Research Letters 47, 102940.
[32]Schwarz, Thomas V., and Andrew C. Szakmary, 1994, “Price Discovery in Petroleum Markets: Arbitrage, Cointegration, and the Time Interval of Analysis”, Journal of Futures Markets 14(2): 147~167.
[33]Shastri, Kuldeep, Ramabhadran S. Thirumalai, and Chad J. Zutter, 2008, “Information Revelation in the Futures Market: Evidence from Single Stock Futures”, Journal of Futures Markets 28(4): 335~353.
[34]Sifat, Imtiaz Mohammad, Azhar Mohamad, and Kevin Reinaldo Amin, 2021, “Intertemporal Price Discovery between Stock Index Futures and Spot Markets: New Evidence from High-Frequency Data”, International Journal of Finance & Economics 26(1): 898~913.
[1] 许荣, 刘成立. 限制交易政策如何影响期现关系?——对股指期货价格发现功能的实证检验[J]. 金融研究, 2019, 464(2): 154-168.
[2] 张劲帆, 汤莹玮, 刚健华, 樊林立. 中国利率市场的价格发现 ——对国债现货、期货以及利率互换市场的研究[J]. 金融研究, 2019, 463(1): 19-34.
[1] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[2] 金宇超, 靳庆鲁, 李晓雪. 资本市场注意力总量是稀缺资源吗?[J]. 金融研究, 2017, 448(10): 162 -177 .
[3] 张靖佳, 孙浦阳, 古芳. 欧洲量化宽松政策对中国企业出口影响——一个汇率网状溢出效应视角[J]. 金融研究, 2017, 447(9): 18 -34 .
[4] 李春涛, 刘贝贝, 周鹏. 卖空与信息披露:融券准自然实验的证据[J]. 金融研究, 2017, 447(9): 130 -145 .
[5] 张浩, 易行健, 周聪. 房产价值变动、城镇居民消费与财富效应异质性——来自微观家庭调查数据的分析[J]. 金融研究, 2017, 446(8): 50 -66 .
[6] 张海洋. 融资约束下金融互助模式的演进——从民间金融到网络借贷[J]. 金融研究, 2017, 441(3): 101 -115 .
[7] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[8] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[9] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
[10] 李建军, 马思超. 债券违约对涉事信用评级机构的影响:基于中国信用债市场违约事件的分析[J]. 金融研究, 2017, 441(3): 116 -129 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1