Please wait a minute...
金融研究  2025, Vol. 545 Issue (11): 189-206    
  本期目录 | 过刊浏览 | 高级检索 |
基金共同持股网络与股票价格联动
周颖刚, 唐诚蔚, 许杏柏
厦门大学经济学院/王亚南经济研究院/邹至庄经济研究院, 福建厦门 361005
Fund Common Ownership Network and Stock Price Comovement
ZHOU Yinggang, TANG Chengwei, XU Xingbai
School of Economics/Wang Yanan Institute for Studies in Economics/ Paula and Gregory Chow Institute for Studies in Economics, Xiamen University
下载:  PDF (540KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文基于我国2007—2022年基金持股数据,构建以股票为节点的基金共同持股网络,并运用空间自回归模型考察股票价格联动效应。结果显示,基金共同持股网络中股票存在显著的价格联动,该结论通过了一系列稳健性检验。进一步分析发现,资金流规模较大、信息共享程度较高的基金共同持股网络中,股票价格联动效应更为明显;此外,投资者情绪高涨时,基金共同持股网络对价格联动的影响也会增强。本文还借助空间自回归Tobit模型,对2015年股市大幅波动期间的股票日收益率进行截面回归,发现不仅未停牌股票在基金共同持股网络中呈现显著的价格联动,停牌股票也能通过该网络对未停牌股票价格产生影响。研究表明,基金共同持股网络不仅影响股票价格联动,还可能成为极端市场情况下风险传导的渠道之一。本文结论对理解基金共同持股与股价联动的关系、防范资本市场风险传导具有一定参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周颖刚
唐诚蔚
许杏柏
关键词:  基金共同持股网络  股票价格联动  空间自回归模型  停牌    
Summary:  In recent years, public offering of funds in China has developed rapidly and plays a crucial role in the financial market. As important institutional investors, the behavior of funds can have a significant impact on the correlation between stocks, which is also a key factor in stock pricing and risk. With the continuous expansion of assets under management, the investment behavior of funds may further affect stock prices by influencing the correlation between stocks. A deep understanding and analysis of the relationship between funds and stock price comovement is crucial for the stable development of China's stock market and the safety of the financial system.
Antón and Polk (2014) find that the common ownership of two stocks by US mutual funds significantly increases their future price correlation, enhancing price comovement. This conclusion has also been verified in China. In fact, a network emerges among stocks that are commonly held by funds, which is the fund common ownership network. In this network, where stocks serve as nodes, stocks directly commonly held by funds exhibit comovement. This is akin to the correlation between “neighbors” in the network, representing a first-order network effect, and has been the focus of existing literature. Moreover, different funds often share information on the same large-position stocks, potentially exhibiting a herding effect in asset allocation, and even facing similar fund flow shocks. This leads to correlations in their trading behaviors. Consequently, stocks that are not directly commonly held by funds may also experience indirect price comovement under the influence of the fund common ownership network, representing a higher-order network effect or the influence from multi-layered “neighbors of neighbors”. Existing literature primarily focuses on the correlations between two stocks directly held by funds, neglecting the price comovement within a higher-order network.
Using open-ended active equity funds and their holdings of Shanghai and Shenzhen A-share stocks from 2007 to 2022 as samples, we construct a fund common ownership network with stocks as nodes, and employ a spatial autoregressive model to study the price comovement and risk contagion under this network. We make four main contributions. First, we establish a fund common ownership network based on common shareholding behaviors of funds, enriching the literature related to stock networks. Second, existing literature measures stock price comovement from a correlation perspective, focusing on the similarity between two time series. This approach not only fails to effectively quantify the amplitudes of cross-sectional comovement but also overlooks possible indirect links among a wider range of stocks, which can be solved by a spatial autoregressive model. Third, we analyze how the fund common ownership network influences stock price comovement from three perspectives: fund flows, information sharing, and investor sentiment. Fourth, we show that the fund common ownership network may serve as a contagion channel under extreme market scenarios, through which the suspended stocks can impact unsuspended stocks, thereby enriching the literature on stock market risk contagion.
The research findings indicate that stocks exhibit significant price comovement under the fund common ownership network, supported by a series of robustness tests. We discover that stocks exhibit stronger price comovement effects under networks with higher fund flows and higher information sharing. Furthermore, the higher the investor sentiment, the greater the intensity of stock price comovement within the fund common ownership network. By applying a spatial autoregressive Tobit model to conduct cross-sectional regressions on daily returns during the significant fluctuation in the stock market in 2015, we find that not only do unsuspended stocks exhibit significant price comovement within the fund common ownership network, but large-scale suspended stocks can also impact the prices of unsuspended stocks through this network. Our research points out that the fund common ownership network not only affects stock price comovement but also potentially serves as a channel for risk contagion in extreme events. The conclusions offer insights into the relationship between fund common ownership and stock price comovement, and have implications for preventing risk contagion in the capital market.
Keywords:  Fund Common Ownership Network    Stock Price Comovement    Spatial Autoregressive Model    Trading Suspensions
JEL分类号:  C21   G12   G23  
基金资助: * 本文感谢国家自然科学基金(71988101、72073110、72333001)、国家社会科学基金重大项目(19ZDA060)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  许杏柏,经济学博士,教授,厦门大学王亚南经济研究院、经济学院,E-mail: xuxingbai@xmu.edu.cn.   
作者简介:  周颖刚,经济学博士,教授,厦门大学经济学院、王亚南经济研究院,E-mail: yinggang.zhou@gmail.com.
唐诚蔚,经济学博士,厦门大学邹至庄经济研究院,E-mail: tangchw_20@126.com.
引用本文:    
周颖刚, 唐诚蔚, 许杏柏. 基金共同持股网络与股票价格联动[J]. 金融研究, 2025, 545(11): 189-206.
ZHOU Yinggang, TANG Chengwei, XU Xingbai. Fund Common Ownership Network and Stock Price Comovement. Journal of Financial Research, 2025, 545(11): 189-206.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V545/I11/189
[1]陈新春、刘阳和罗荣华,2017,《机构投资者信息共享会引来黑天鹅吗?——基金信息网络与极端市场风险》,《金融研究》第7期,第140~155页。
[2]代冰彬和岳衡,2015,《货币政策、流动性不足与个股暴跌风险》,《金融研究》第7期,第135~151页。
[3]黄诒蓉和白羽轩,2021,《网络传染是“真羊群”还是“伪羊群”?——网络传染程度对资本市场定价效率的影响》,《中国管理科学》第9期,第12~24页。
[4]李科、陆蓉、夏翊和胡凡,2019,《基金经理更换、股票联动与股票价格》,《金融研究》第1期,第188~206页。
[5]刘京军、刘彦初和熊和平,2018,《基金竞争与泡沫资产配置的模仿行为研究》,《管理科学学报》第2期,第114~126页。
[6]刘京军和苏楚林,2016,《传染的资金:基于网络结构的基金资金流量及业绩影响研究》,《管理世界》第1期,第54~65页。
[7]罗荣华、田正磊和方红艳,2020,《“和而不群”还是“卓尔不群”?——基于基金网络信息使用的视角》,《金融研究》第8期,第188~206页。
[8]王虎、李守伟、马瑜寅和刘晓星,2023,《基于共同持股网络的基金系统性风险研究》,《中国管理科学》第6期,第82~90页。
[9]吴晓晖、郭晓冬和乔政,2019,《机构投资者抱团与股价崩盘风险》,《中国工业经济》第2期,第117~135页。
[10]肖欣荣、刘健和赵海健,2012,《机构投资者行为的传染——基于投资者网络视角》,《管理世界》第12期,第35~45页。
[11]徐飞、花冯涛和李强谊,2019,《投资者理性预期、流动性约束与股价崩盘传染研究》,《金融研究》第6期,第169~187页。
[12]易志高和茅宁,2009,《中国股市投资者情绪测量研究:CICSI的构建》,《金融研究》第11期,第174~184页。
[13]张自力、闫红蕾和张楠,2019,《股票网络、系统性风险与股票定价》,《经济学(季刊)》第1期,第329~350页。
[14]郑振龙、王为宁和刘杨树,2014,《平均相关系数与系统性风险:来自中国市场的证据》,《经济学(季刊)》第3期,第1047~1064页。
[15]周颖刚和肖潇,2022,《汇率波动、生产网络与股市风险——基于中美贸易摩擦背景的分析》,《金融研究》第7期,第115~134页。
[16]Antón, M., C. Polk, 2014, “Connected Stocks”, The Journal of Finance, 69(3), pp.1099~1127.
[17]Barberis, N., A. Shleifer, J. Wurgler, 2005, “Comovement”, Journal of Financial Economics, 75(2), pp.283~317.
[18]Chen, Q., I. Goldstein, W. Jiang, 2010, “Payoff Complementarities and Financial Fragility: Evidence from Mutual Fund Outflows”, Journal of Financial Economics, 97(2), pp.239~262.
[19]Colla, P., A. Mele, 2010, “Information Linkages and Correlated Trading”, The Review of Financial Studies, 23(1), pp.203~246.
[20]Coval, J., E. Stafford, 2007, “Asset Fire Sales (and Purchases) in Equity Markets”, Journal of Financial Economics, 86(2), pp.479~512.
[21]Coval, J. D., T. J. Moskowitz, 2001, “The Geography of Investment: Informed Trading and Asset Prices”, Journal of Political Economy, 109(4), pp.811~841.
[22]Di Giovanni,J., G. Hale, 2022, “Stock Market Spillovers via the Global Production Network: Transmission of U.S. Monetary Polic”, The Journal of Finance, 77(6), pp.3373~3421.
[23]Fama E. F., K. R. French, 1993, “Common Risk Factors in the Returns on Stocks and Bonds”, Journal of Financial Economics, 33(1), pp.3~56.
[24]Greenwood, R., D. Thesmar, 2011, “Stock Price Fragility”, Journal of Financial Economics, 102(3), pp.471~490.
[25]Grennan, J., 2019, “Dividend Payments as A Response to Peer Influence”, Journal of Financial Economics, 131(3), pp.549~570.
[26]Grieser, W., C. Hadlock, J. LeSage, M. Zekhnini, 2022, “Network Effects in Corporate Financial Policies”, Journal of Financial Economics, 144(1), pp.247~272.
[27]Herskovic, B., 2018. “Networks in Production: Asset Pricing Implications”, The Journal of Finance, 73(4), pp.1785~1818.
[28]Jiang, H., Y. Li, Z. Sun, A. Wang, 2022, “Does Mutual Fund Illiquidity Introduce Fragility into Asset Prices? Evidence from the Corporate Bond Market”, Journal of Financial Economics, 143(1), pp.277~302.
[29]Leary, M. T., M. R. Roberts, 2014, “Do Peer Firms Affect Corporate Financial Policy?”, The Journal of Finance, 69(1), pp.139~178.
[30]Lee, C. M. C., S. T. Sun, R. Wang, R. Zhang, 2019, “Technological Links and Predictable Returns”, Journal of Financial Economics, 132(3), pp.76~96.
[31]Lee, L., J. Yu, 2010, “A Spatial Dynamic Panel Data Model with Both Time and Individual Fixed Effects”, Econometric Theory, 26(2): pp.564~597.
[32]Lee, L, J. Yu, 2012, “QML Estimation of Spatial Dynamic Panel Data Models with Time Varying Spatial Weights Matrices”, Spatial Economic Analysis, 7(1), pp.31~74.
[33]Lou, D., 2012, “A Flow-based Explanation for Return Predictability”, The Review of Financial Studies, 25(12), pp.3457~3489.
[34]Mammen, E., 1993, “Bootstrap and Wild Bootstrap for High Dimensional Linear Models”, The Annals of Statistics, 21(1), pp.255~285.
[35]Pareek, A., 2012, “Information Networks: Implications for Mutual Fund Trading Behavior and Stock Returns”, Working Paper.
[36]Pollet, J. M., M. Wilson, 2010, “Average Correlation and Stock Market Returns”, Journal of Financial Economics, 96(3), pp.364~380.
[37]Roy, R. B., U. K. Sarkar, 2013, “A Social Network Approach to Change Detection in the Interdependence Structure of Global Stock Markets”, Social Network Analysis and Mining, 3, pp.269~283.
[38]Vandewalle, N., F. Brisbois, X. Tordoir, 2001, “Self-organized Critical Topology of Stock Markets”, Quantitative Finance, 1, pp.372~375.
[39]Wei, S. X., 2002, “A Censored-GARCH Model of Asset Returns with Price Limits”, Journal of Empirical Finance, 9(2), pp.197~223.
[40]Xu, X., L. Lee, 2015, “Maximum Likelihood Estimation of A Spatial Autoregressive Tobit Model”, Journal of Econometrics, 188(1), pp.264~280.
[1] 刘哲希, 王兆瑞, 吴韬. 老龄化与“高TFP贡献率、低增长”问题[J]. 金融研究, 2023, 522(12): 1-19.
[2] 康书隆, 王晓婷, 余海跃. 购房借贷约束与缴存家庭消费——基于公积金运营流动性视角的分析[J]. 金融研究, 2022, 501(3): 115-134.
[3] 白俊红, 聂亮. 能源效率、环境污染与中国经济发展方式转变[J]. 金融研究, 2018, 460(10): 1-18.
[4] 范庆祝, 贾若, 孙祁祥. 寿险供给侧指标对寿险消费的影响——基于寿险供给质量、动能和效率的视角[J]. 金融研究, 2017, 447(9): 115-129.
[5] 王兵, 戴敏, 武文杰. 环保基地政策提高了企业环境绩效吗?——来自东莞市企业微观面板数据的证据[J]. 金融研究, 2017, 442(4): 143-160.
[1] 曾利飞, 辛子辰, 许志, 曹伟. 健全社会保障体系与居民生育率——基于长期护理保险视角[J]. 金融研究, 2025, 545(11): 58 -76 .
[2] 柳建华, 陈果, 朱效禹, 廖天龙. 新《环保法》实施与   重污染企业的资本结构调整[J]. 金融研究, 2025, 545(11): 77 -95 .
[3] 何青, 庄朋涛, 夏琴, 琚望静. ESG新闻舆情如何影响企业   非效率投资行为——基于信息和情绪双重视角[J]. 金融研究, 2025, 545(11): 96 -114 .
[4] 郑登津, 史嘉铭, 陈菁. 政府财会监督与分析师预测质量——基于财政部会计信息质量随机检查的证据[J]. 金融研究, 2025, 545(11): 115 -132 .
[5] 马光荣, 尹浩儒, 赵耀红. 股利税如何影响企业投资?——基于差别化股利税政策的研究[J]. 金融研究, 2025, 545(11): 133 -151 .
[6] 熊熊, 陈若鑫, 孟永强, 高雅, 林兟. “以行定类”:基于持股偏好的投资者分类[J]. 金融研究, 2025, 545(11): 170 -188 .
[7] 张梦婷, 司登奎, 石岿然, 王桂虎. 收入不稳定冲击的经济波动效应与政策协同调控[J]. 金融研究, 2025, 543(9): 1 -19 .
[8] 尚玉皇, 刘华, 申峰. 预期的博弈:央行沟通与国债收益率曲线[J]. 金融研究, 2025, 543(9): 20 -38 .
[9] 纪敏, 邱丽萍, 杨刚, 刘俊杰, 高洁. 通胀预期如何影响债券信用利差?[J]. 金融研究, 2025, 544(10): 1 -20 .
[10] 王擎, 秦慧颖, 盛夏. 金融科技、货币政策传导与消费——来自大科技平台个人用户的微观证据[J]. 金融研究, 2025, 545(11): 1 -18 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1