Please wait a minute...
金融研究  2025, Vol. 545 Issue (11): 170-188    
  本期目录 | 过刊浏览 | 高级检索 |
“以行定类”:基于持股偏好的投资者分类
熊熊, 陈若鑫, 孟永强, 高雅, 林兟
天津大学管理与经济学部/复杂管理系统实验室,天津 300072;
大连理工大学经济管理学院,辽宁大连 116024
Behavior-Based Typology: Classifying Investors by Stock Holding Preferences
XIONG Xiong, CHEN Ruoxin, MENG Yongqiang, GAO Ya, LIN Shen
College of Management and Economics/Laboratory of Computation and Analytics of Complex Management Systems (CACMS), Tianjin University;
School of Economics and Management, Dalian University of Technology
下载:  PDF (997KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文基于“投资者类型取决于其行为”的逻辑,利用2016—2021年间近十万个个体投资者账户数据,从持股偏好角度对投资者进行分类与差异性分析。研究发现,在单一特征中,股票价格是个体投资者内部偏好分歧最大的指标,分化了不同类型投资者的持仓。进一步通过特征重要性筛选、属性重叠简化及主成分分析,提取出反映个体投资者偏好的两个关键维度:股价关注度与壳价值。结合投资者基础标签与行为模式的分析表明,不同持股偏好的投资者难以通过单一标签或行为加以区分,其行为特征呈现出较高的多样性。本文研究为理解资本市场参与者结构提供了可行的技术路径,有助于推进差异性行为建模与海量参与者下的微观金融监管实践。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
熊熊
陈若鑫
孟永强
高雅
林兟
关键词:  个体投资者  投资者分类  持股偏好    
Summary:  Recognizing, distinguishing, and characterizing the heterogeneous features of micro-level agents constitutes the foundation for advancing micro-level regulatory technologies and constructing a capital market theory grounded in heterogeneous agent behavior. From the practical perspective of financial risk management, the focus of regulatory issues has shifted from “how to regulate” to “the efficiency of regulatory input and output.” Real-time monitoring of all micro-market participants would result in significant waste of computational resources and diminishing marginal returns from regulatory efforts. From the theoretical perspective of financial risk management, the behavioral characteristics of micro-agents, their heterogeneity, and their interactions represent the underlying drivers of systemic risk emergence within the macro-level capital market as a complex system. Meanwhile, advances in information technology have continuously enhanced the acquisition and analytical capacity for massive micro-level data. The joint forces of technological progress and theoretical demand necessitate deeper academic inquiry into micro-level heterogeneity.
Although prior studies have made certain progress, the simple reliance on “intuitive” classification criteria such as wealth or age has left numerous issues unresolved. The most salient problems include: (i) insignificant differences across categories, (ii) failure to identify critical categories, and (iii) the inability to justify the selection of segmentation boundaries. The first two issues substantially diminish the applicability of classification methods in managerial contexts, whereas the subjectivity in boundary selection severely undermines their generalizability for research applications. Consequently, existing studies primarily examine the impact of predefined labels on investor behavioral heterogeneity rather than exploring how labels can be cut to effectively distinguish investor behaviors, leaving a notable research gap.
Building on the premise that investor types are fundamentally shaped by their behavior, this study employs data from 96,072 individual investor accounts spanning 2016 to 2021, along with 109 stock factors, to classify and analyze investors based on their holding preferences. The results reveal that stock price, as a singular characteristic, emerges as the most significant determinant of internal preference divergence among individual investors, thereby distinguishing distinct investor types in terms of their holdings.
Based on the relative importance of preference divergence and the intercorrelation among indicators, this study ultimately focuses on nine firm characteristics. Employing Principal Component Analysis (PCA) for dimension reduction, we summarize the major sources of heterogeneity in investor preferences into two composite dimensions: price-attention factor and shell-value factor, which collectively explain over 50% of the overall heterogeneity across the nine indicators. This outcome not only aligns with existing asset pricing and individual investor studies in the Chinese market but also corroborates the widely cited retail investor adage: “Bet on restructuring (shell value) mid-year and on earnings (low price and low attention) at year-end.”
Subsequently, using each investor's positions along these two composite dimensions, we apply the K-means clustering algorithm to categorize investors and examine the relationship between preference-based clusters and investors' demographic and behavioral characteristics. The empirical findings indicate that investor classification derived from stock-holding preferences is not driven by a single demographic label but rather by a combination of multiple attributes and behavioral patterns. For example, two investor clusters may both display characteristics such as a small portfolio size, older age, longer investment experience, lower education, and a lower turnover ratio, making differentiation based on a single demographic label infeasible. However, segmentation based on holding preferences reveals that investors with a strong shell-value orientation warrant closer regulatory attention compared to relatively mature and conservative investors under a tiered supervision framework.
Based on the findings, three policy recommendations are proposed:
First, enhance tiered supervision and risk warning systems. In light of the challenges posed by financial innovation and digitalization, strengthening the regulatory framework requires robust support from supervisory technology (RegTech). Considering the efficiency constraints in comprehensive micro-level financial regulation, we recommend adopting an approach similar to that presented in this study—identifying core investors based on stock-holding preferences to accurately target risk-asset holders and potential spillover agents, and implementing dynamic, tiered regulation.
Second, deliver investor education tailored to heterogeneity. In a market dominated by retail investors—with over 200 million small and medium-sized participants—we recommend using stock-holding preferences as an entry point for investor education. Through regular review and monitoring, regulators can correct behavioral biases, such as excessive risk-seeking and gambling tendencies.
Third, employ shell-value preference as a quantitative indicator to advance the registration-based system. At present, China is implementing institutional reforms on both the asset and investor fronts. To address the difficulty of quantifying policy feedback on the investor side, we suggest leveraging the technical approach outlined in this study to measure shell-value preferences among different investor groups, thereby providing an empirical basis for tracking policy responses and evaluating the effectiveness of reforms.
Keywords:  Individual Investors    Investor Classification    Stock Holding Preference
JEL分类号:  G10   G11   G14  
基金资助: * 本文感谢国家自然科学基金(72141304、72371184)、国家重点研发计划重点专项项目(2022YFC33033304)的资助。感谢匿名审稿人以及何学中、胡聪慧、屈源育、隋鹏飞、张维、祝小全等专家的宝贵意见,文责自负。
通讯作者:  林 兟,管理学博士,副研究员,天津大学管理与经济学部/复杂管理系统实验室,E-mail: linshen_fin@tju.edu.cn.   
作者简介:  熊 熊,管理学博士,教授,天津大学管理与经济学部/复杂管理系统实验室,E-mail:xxpeter@tju.edu.cn.
陈若鑫,博士研究生,天津大学管理与经济学部,E-mail: crx0403@tju.edu.cn.
孟永强,管理学博士,副教授,天津大学管理与经济学部/复杂管理系统实验室,E-mail: yqmeng@tju.edu.cn.
高 雅,管理学博士,副教授,大连理工大学经济管理学院,E-mail: gaoya@dlut.edu.cn.
引用本文:    
熊熊, 陈若鑫, 孟永强, 高雅, 林兟. “以行定类”:基于持股偏好的投资者分类[J]. 金融研究, 2025, 545(11): 170-188.
XIONG Xiong, CHEN Ruoxin, MENG Yongqiang, GAO Ya, LIN Shen. Behavior-Based Typology: Classifying Investors by Stock Holding Preferences. Journal of Financial Research, 2025, 545(11): 170-188.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V545/I11/170
[1]陈文博、陈浪南和王升泉,2019,《投资者的博彩行为研究——基于盈亏状态和投资者情绪的视角》,《中国管理科学》第2期,第19~30页。
[2]李晨辰和吴冲锋,2022,《证券交易的移动化:眼球效应与乐观偏差》,《管理科学学报》第10期,第1~20页。
[3]林兟、何为、余剑峰和熊熊,2023,《公募基金改善了市场定价效率吗?——持股基金质量与股票收益》,《金融研究》第4期,第149~167页。
[4]罗进辉、向元高和金思静,2017,《中国资本市场低价股的溢价之谜》,《金融研究》第1期,第191~206页。
[5]屈源育、沈涛和吴卫星,2018,《壳溢价:错误定价还是管制风险?》,《金融研究》第3期,第155~171页。
[6]宋双杰、曹晖和杨坤,2011,《投资者关注与IPO异象——来自网络搜索量的经验证据》,《经济研究》第S1期,第145~155页。
[7]许泳昊、徐鑫和朱菲菲,2022,《中国A股市场的“大单异象”研究》,《管理世界》第7期,第120~136页。
[8]张维、林兟、康俊卿、熊熊和张永杰,2023,《计算实验金融工程:大数据驱动的金融管理决策工具》,《管理世界》第5期,第173~190页。
[9]朱红兵和张兵,2020,《价值性投资还是博彩性投机?——中国A股市场的MAX异象研究》,《金融研究》第2期,第167~187页。
[10]Akcay, E., and D. Hirshleifer, 2021, “Social Finance as Cultural Evolution, Transmission Bias, and Market Dynamics”, PNAS, 118(26), p. e2015568118.
[11]An, L., D. Lou, and D. Shi, 2022, “Wealth Redistribution in Bubbles and Crashes”, Journal of Monetary Economics, 126, pp. 134~153.
[12]Anagol, S., V. Balasubramaniam, and T. Ramadorai, 2021, “Learning from Noise: Evidence from India's IPO Lotteries”, Journal of Financial Economics, 140(3), pp. 965~986.
[13]Balasubramaniam, V., J. Y. Campbell, T. Ramadorai, and B. Ranish, 2023, “Who Owns What? A Factor Model for Direct Stockholding”, Journal of Finance, 78(3), pp. 1545~1591.
[14]Barber, B. M., and T. Odean, 2000, “Trading Is Hazardous to Your Wealth: The Common Stock Investment Performance of Individual Investors”, Journal of Finance, 55(2), pp. 773~806.
[15]Barber, B. M., and T. Odean, 2008, “All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors”, Review of Financial Studies, 21(2), pp. 785~818.
[16]Barrot, J. N., R. Kaniel, and D. Sraer, 2016, “Are Retail Traders Compensated for Providing Liquidity?”, Journal of Financial Economics, 120(1), pp. 146~168.
[17]Betermier, S., L. E. Calvet, and P. Sodini, 2017, “Who Are the Value and Growth Investors?”, Journal of Finance, 72(1), pp. 5~46.
[18]Cochrane, J., 2009, “Asset Pricing: Revised Edition”, Princeton University Press.
[19]Da, Z., J. Engelberg, and P. Gao, 2011, “In Search of Attention”, Journal of Finance, 66(5), pp. 1461~1499.
[20]Grinblatt, M., M. Keloharju, and J. T. Linnainmaa, 2012, “IQ, Trading Behavior, and Performance”, Journal of Financial Economics, 104(2), pp. 339~362.
[21]Gu, S., B. Kelly,D. Xiu, 2020, “Empirical Asset Pricing Via Machine Learning”, Review of Financial Studies, 33(5), pp. 2223~2273.
[22]Hou, K., C. Xue, and L. Zhang, 2020, “Replicating Anomalies”, Review of Financial Studies, 33(5), pp. 2019~2133.
[23]Hu, C., J. C. Lin, and Y. J. Liu, 2022, “What Are the Benefits of Attracting Gambling Investors? Evidence from Stock Splits in China”, Journal of Corporate Finance, 74, p. 102199.
[24]Jiang, Z., C. Peng, and H. Yan, 2024, “Personality Differences and Investment Decision-Making”, Journal of Financial Economics, 153, p. 103776.
[25]Kaniel, R., S. Liu, G. Saar, and S. Titman, 2012, “Individual Investor Trading and Return Patterns around Earnings Announcements”, Journal of Finance, 67(2), pp. 639~680.
[26]Kumar, A., 2009, “Who Gambles in the Stock Market?”, Journal of Finance, 64(4), pp. 1889~1933.
[27]Lee, Y., Y. Kim, J. Sanz-Cruzado, R. Mccreadie, Y. Lee, 2024, “Stock Recommendations for Individual Investors: A Temporal Graph Network Approach with Mean-Variance Efficient Sampling”, Proceedings of the 5th ACM International Conference on AI in Finance, 24, pp. 795~803.
[28]Li, Z., L. X. Liu, X. Liu, and W. K. John, 2024, “Replicating and Digesting Anomalies in the Chinese A-Share Market”, Management Science, 70(8), pp. 5066~5090.
[29]Liao, J., C. Peng, and N. Zhu, 2022, “Extrapolative Bubbles and Trading Volume”, Review of Financial Studies, 35(4), pp. 1682~1722.
[30]Liu, H., C. Peng, W. A. Xiong, and W. Xiong, 2022, “Taming the Bias Zoo”, Journal of Financial Economics, 143(2), pp. 716~741.
[31]Liu, J., R. F. Stambaugh, and Y. Yuan, 2019, “Size and Value in China”, Journal of Financial Economics, 134(1), pp. 48~69.
[32]Ma, J., X. Li, L. Lu, W. Wu, and X. Xiong, 2022, “Individual Investors' Dispersion in Beliefs and Stock Returns”, Financial Management, 51(3), pp. 929~953.
[33]Markowitz, H., 1952, “Portfolio Selection”, Journal of Finance, 7(1), pp. 77~91.
[34]McConville, R., R. Santos-Rodriguez, R. Piechocki, I. Craddock, 2021, “N2d:(Not Too) Deep Clustering Via Clustering the Local Manifold of an Autoencoded Embedding”, Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), 25, pp. 5145~5152.
[35]Mukherjee, S., H. Asnani,E. Lin,S. Kannan, 2019, “Clustergan: Latent Space Clustering in Generative Adversarial Networks”, Proceedings of the AAAI Conference on Artificial Intelligence, 33(1), pp. 4610~4617.
[36]Odean, T., 1998, “Are Investors Reluctant to Realize Their Losses?”, Journal of Finance, 53(5), pp. 1775~1798.
[37]Sharpe, W. F., 1964, “Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk”, Journal of Finance, 19(3), pp. 425~442.
[38]Shiller, R. J., 1981, “The Use of Volatility Measures in Assessing Market Efficiency”, Journal of Finance, 36(2), pp. 291~304.
[39]Xiong, W., and J. Yu, 2011, “The Chinese Warrants Bubble”, American Economic Review, 101(6), pp. 2723~2753.
[1] 方意, 陈姿羽, 贾妍妍. 实体经济与金融市场的风险监测与调控[J]. 金融研究, 2025, 541(7): 1-20.
[2] 谭莹, 王盼, 张勋. 数字金融发展的劳动力迁移效应——来自中国家庭追踪调查的微观证据[J]. 金融研究, 2024, 532(10): 39-57.
[3] 衣昭颖, 柳建华, 马新啸. 客户高质量会计信息与供应商债务违约风险[J]. 金融研究, 2024, 531(9): 77-94.
[4] 顾明, 任蓝翔, 李东旭. 政策规范、同群效应与资本市场震慑——来自A股上市公司随意停牌的证据[J]. 金融研究, 2024, 530(8): 95-112.
[5] 徐亚飞, 孟庆玺. 并购业绩承诺完成质量何以提升?——来自媒体监督的证据[J]. 金融研究, 2024, 528(6): 188-206.
[6] 杨子晖, 张平淼, 林师涵. 股票市场与债券市场的风险联动与预测研究——基于机器学习的前沿视角[J]. 金融研究, 2024, 523(1): 131-149.
[7] 叶彦艺, 刘碧波, 施展. 债务协商、再融资风险与信用债定价 ——来自中国债券市场的证据[J]. 金融研究, 2023, 520(10): 104-124.
[8] 彭凯翔, 陈志武, 袁为鹏. 17至20世纪初中国的商业利率变迁:以金融组织演进为线索的考察[J]. 金融研究, 2023, 516(6): 187-206.
[9] 林兟, 何为, 余剑峰, 熊熊. 公募基金改善了市场定价效率吗?——持股基金质量与股票收益[J]. 金融研究, 2023, 514(4): 149-167.
[10] 杨子晖, 王姝黛, 李东承, 冷铁成. 债务风险传染的多重网络研究[J]. 金融研究, 2023, 513(3): 38-56.
[11] 陈奉功, 张谊浩. 绿色债券发行、企业绿色转型与市场激励效应[J]. 金融研究, 2023, 513(3): 131-149.
[12] 顾明, 曾力, 陈海强, 倪博. 交易限制与股票市场定价效率——基于创业板涨跌幅限制放宽的准自然实验研究[J]. 金融研究, 2022, 509(11): 189-206.
[13] 潘越, 林淑萍, 张鹏东. 专利提前公开的资本市场动因——基于企业被并购压力视角的研究[J]. 金融研究, 2022, 506(8): 189-206.
[14] 张伟平, 曹廷求. 中国房地产企业间系统性风险溢出效应分析——基于尾部风险网络模型[J]. 金融研究, 2022, 505(7): 94-114.
[15] 段丙蕾, 汪荣飞, 张然. 南橘北枳:A股市场的经济关联与股票回报[J]. 金融研究, 2022, 500(2): 171-188.
[1] 曾利飞, 辛子辰, 许志, 曹伟. 健全社会保障体系与居民生育率——基于长期护理保险视角[J]. 金融研究, 2025, 545(11): 58 -76 .
[2] 柳建华, 陈果, 朱效禹, 廖天龙. 新《环保法》实施与   重污染企业的资本结构调整[J]. 金融研究, 2025, 545(11): 77 -95 .
[3] 何青, 庄朋涛, 夏琴, 琚望静. ESG新闻舆情如何影响企业   非效率投资行为——基于信息和情绪双重视角[J]. 金融研究, 2025, 545(11): 96 -114 .
[4] 郑登津, 史嘉铭, 陈菁. 政府财会监督与分析师预测质量——基于财政部会计信息质量随机检查的证据[J]. 金融研究, 2025, 545(11): 115 -132 .
[5] 马光荣, 尹浩儒, 赵耀红. 股利税如何影响企业投资?——基于差别化股利税政策的研究[J]. 金融研究, 2025, 545(11): 133 -151 .
[6] 张梦婷, 司登奎, 石岿然, 王桂虎. 收入不稳定冲击的经济波动效应与政策协同调控[J]. 金融研究, 2025, 543(9): 1 -19 .
[7] 尚玉皇, 刘华, 申峰. 预期的博弈:央行沟通与国债收益率曲线[J]. 金融研究, 2025, 543(9): 20 -38 .
[8] 纪敏, 邱丽萍, 杨刚, 刘俊杰, 高洁. 通胀预期如何影响债券信用利差?[J]. 金融研究, 2025, 544(10): 1 -20 .
[9] 王擎, 秦慧颖, 盛夏. 金融科技、货币政策传导与消费——来自大科技平台个人用户的微观证据[J]. 金融研究, 2025, 545(11): 1 -18 .
[10] 徐丽鹤, 周利, 张勋. 中国数字金融发展能否实现普惠性?[J]. 金融研究, 2025, 545(11): 19 -38 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1