Please wait a minute...
金融研究  2025, Vol. 543 Issue (9): 77-95    
  本期目录 | 过刊浏览 | 高级检索 |
跨境数据流动壁垒对中国的影响及反制战略
王永进, 王文斌, 谢芳
南开大学经济学院,天津 300071
The Impact of Cross-Border Data Flow Barriers on China and China's Response Strategy
WANG Yongjin, WANG Wenbin, XIE Fang
School of Economics, Nankai University
下载:  PDF (1559KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文基于量化一般均衡模型分析了歧视性与非歧视性两类跨境数据流动壁垒的影响,以及利用产业政策与跨境数据流动政策进行反制的可行性。结果表明:第一,非歧视性跨境数据流动政策(欧盟GDPR)对全球绝大多数国家的福利造成负面冲击,其中欧盟国家的福利损失最为明显。第二,美国针对中国的歧视性跨境数据流动政策降低了绝大多数国家的福利,且随着数据规模经济弹性的提升,中国能够借助数据规模优势减少福利损失。第三,面对跨境数据流动壁垒,产业政策和跨境数据流动政策均能实现对跨境数据流动限制的有效反制,且产业政策对本国福利的提升幅度与数据规模经济弹性呈倒U形关系。本文研究为大数据时代我国经济高质量发展提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王永进
王文斌
谢芳
关键词:  跨境数据流动壁垒  数据外部规模经济  产业政策  跨境数据流动政策    
Summary:  In the era of the digital economy, data has become a core production factor, not only serving as a fundamental strategic resource to enhance national competitiveness but also emerging as a new source of comparative advantage. As the world enters a critical period of deepening technological revolutions and industrial transformation, many countries have made the big data industry a key focus of economic and social development. Through the enactment of laws governing cross-border data flows, countries are racing to secure data resources and gain a leading position in global industrial competition. Against this backdrop, how China can effectively safeguard its data sovereignty while enhancing global economic competitiveness has become a pressing and important question. At the same time, industrial policy is widely regarded as a key tool for promoting economic growth and achieving high-quality development. In the big data era, traditional industrial policy faces new challenges and opportunities. On the one hand, policymakers must consider how to harness the potential economies of scale embedded in data through well-designed policy instruments. On the other hand, they must also address the distortions in resource allocation caused by cross-border data flow barriers. Therefore, designing an effective industrial policy framework for the big data era, activating the productive potential of data while mitigating the adverse effects of cross-border restrictions, is a critical research agenda for reshaping China's comparative advantage in the global economy.
This paper develops a multi-country, multi-sector general equilibrium model incorporating external data scale economies, providing the first theoretical foundation for the design of China's industrial policy in the era of big data. In the digital economy, external scale economies of data are an important feature of production. As a result, the potential social returns to industrial policy are magnified by the presence of such scale effects. Data in production exhibits three key characteristics: first, external economies of scale, meaning that the unit cost of producing goods decreases as the volume of data increases; second, non-rivalry, with the same unit of data can be simultaneously used by multiple producers; and third, data as a byproduct of consumption, so its international mobility is determined by the data policies of individual countries.
We then calibrate our model to 38 countries and 44 sectors (including 22 tradable sectors) in 2017 using the OECD Inter-Country Input-Output (ICIO) database. Our quantitative analysis yields some key findings. First, the implementation of the EU’s General Data Protection Regulation (GDPR) reduces welfare in most countries, with EU member states experiencing the sharpest declines. The magnitude of welfare loss is positively correlated with the elasticity of data scale economies. Second, U.S. restrictions on cross-border data flows targeting China reduce welfare globally, with China bearing the greatest losses. Third, industrial policy is an effective strategy for China to counter both discriminatory and non-discriminatory cross-border data flow barriers. Data scale economies provide a key rationale for government intervention through industrial policy. The welfare gains from China's industrial policy exhibit an inverted-U relationship with the elasticity of data scale economies. Finally, in response to U.S. discriminatory data flow restrictions, retaliatory data flow policies represent another effective strategy for China to mitigate welfare losses.
This paper emphasizes several key policy recommendations. First, industrial policy serves not only as an effective tool for responding to cross-border data flow restrictions but also as a strategic instrument to safeguard national economic security and enhance the global competitiveness of key industries. Second, developing more systematic and forward-looking cross-border data policy is essential for adapting to the evolving global data governance landscape and for strengthening institutional resilience and strategic capacity in international negotiations. Third, enhancing the elasticity of data scale economies is both an intrinsic requirement for achieving high-quality economic development in China and a critical lever for securing strategic advantage in the global digital economy.
This paper makes several contributions. First, it incorporates external data scale economies and endogenous technology choices into a multi-country, multi-sector general equilibrium model, thereby enriching and extending the existing international trade frameworks. Second, it offers the first general equilibrium-based quantitative assessment of the welfare effects of both discriminatory and non-discriminatory cross-border data flow barriers. Third, it highlights the critical role of data scale economies in shaping the welfare impact of industrial policy. Finally, it proposes a concrete policy response to rising cross-border data flow barriers: by supporting key industries through targeted industrial policies, China can offset the rising marginal costs associated with constrained data scale economies and thereby enhance firms' international competitiveness.
Future research may advance along several dimensions. First, given that the cross-border data flow is largely shaped by government decisions, future work could incorporate the government's trade-offs between data security and data openness, moving beyond the assumption of welfare maximization to better analyze the interaction between data policy and industrial policy. Second, to understand the dynamic effects of such policies, future research could develop a dynamic general equilibrium model with data accumulation, offering deeper insights into the long-run implications of data policy in a multi-country, multi-sector framework.
Keywords:  Cross-Border Data Flow Barriers    Data Scale Economies    Industrial Policy    Cross-Border Data Flow Policy
JEL分类号:  F11   F62   F68   L52  
基金资助: *本文感谢国家社会科学基金重大项目(22&ZD074)的资助。感谢陈菲提供的数据支持。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  谢 芳,博士研究生,南开大学经济学院,E-mail:xiefang@mail.nankai.edu.cn.   
作者简介:  王永进,经济学博士,教授,南开大学经济学院,E-mail:yjw@nankai.edu.cn.
王文斌,博士研究生,南开大学经济学院,E-mail:wang_wenbin@mail.nankai.edu.cn.
引用本文:    
王永进, 王文斌, 谢芳. 跨境数据流动壁垒对中国的影响及反制战略[J]. 金融研究, 2025, 543(9): 77-95.
WANG Yongjin, WANG Wenbin, XIE Fang. The Impact of Cross-Border Data Flow Barriers on China and China's Response Strategy. Journal of Financial Research, 2025, 543(9): 77-95.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V543/I9/77
[1]陈志远、张杰、孙昊和任元明,2024,《创新链和产业链融合下的产业政策》,《经济研究》第9期,第154~172页。
[2]皮建才和罗禹涵,2024,《同行业补贴外部性与企业进口贸易的技术结构变化》,《金融研究》第12期,第116~133页。
[3]王永进、谢芳和王文斌,2024,《跨境数据流动政策的福利效应:制约因素与跨国协调》,《经济研究》第9期,第99~117页。
[4]诸竹君、宋学印、张胜利、陈丽芳,2021,《产业政策、创新行为与企业加成率——基于战略性新兴产业政策的研究》,《金融研究》第6期,第59~75页。
[5]Aridor, G., Y. K. Che and T. Salz, 2023, “The Effect of Privacy Regulation on the Data Industry: Empirical Evidence from GDPR”, RAND Journal of Economics, 54(4), pp. 695~730.
[6]Bartelme, D., A. Costinot, D. Donaldson and A. Rodriguez-Clare, 2025, “The Textbook Case for Industrial Policy: Theory Meets Data”, Journal of Political Economy, 133(5).
[7]Beason, R. and D E. Weinstein, 1996, “Growth, Economies of Scale, and Targeting in Japan (1955-1990)”, The Review of Economics and Statistics, pp. 286~295.
[8]Caliendo, L., R. C. Feenstra, J. Romalis and A. M. Taylor, 2023, “Tariff Reductions, Heterogeneous Firms, and Welfare: Theory and Evidence for 1990-2010”, IMF Economic Review, pp. 1~35.
[9]Caliendo, L. and F. Parro, 2015, “Estimates of the Trade and Welfare Effects of NAFTA”, The Review of Economic Studies, 82(1), pp. 1~44.
[10]Chang, Q., L. W. Cong, L. Wang and L. Zhang, 2023, “Production, Trade, and Cross-Border Data Flows”, National Bureau of Economic Research, No. w31416.
[11]Chen, W., J. Fan and W. Luo, 2024, “Trade and Technology Compatibility in General Equilibrium”, Working Paper.
[12]Choi, J. and A. Levchenko, 2024, “The Long-term Effects of Industrial Policy”, National Bureau of Economic Research.
[13]Cong, L. W., D. Xie and L. Zhang, 2021, “Knowledge Accumulation, Privacy, and Growth in a Data Economy”, Management Science, 67(10), pp. 6480~6492.
[14]Costinot, A. and A. Rodríguez-Clare, 2014, “Trade Theory with Numbers: Quantifying the Consequences of Globalization”, Handbook of International Economics, 4, pp. 197~261.
[15]Dekle, R., J. Eaton and S. Kortum, 2008, “Global Rebalancing with Gravity: Measuring the Burden of Adjustment”, National Bureau of Economic Research.
[16]Demirer, M., D. J. J. Hernández, D. Li and S. Peng, 2024, “Data, Privacy Laws and Firm Production: Evidence from the GDPR”, National Bureau of Economic Research, No. w32146.
[17]Eaton, J. and S. Kortum, 2002, “Technology, Geography, and Trade”, Econometrica, 70(5), pp. 1741~1779.
[18]Goldberg, S. G., G. A. Johnson and S. K. Shriver, 2024, “Regulating Privacy Online: An Economic Evaluation of the GDPR”, American Economic Journal: Economic Policy, 16(1), pp. 325~358.
[19]Goldfarb, A. and D. Trefler, 2017, “AI and International Trade”, National Bureau of Economic Research.
[20]Jones, C. I. and C. Tonetti, 2020, “Nonrivalry and the Economics of Data”, American Economic Review, 110(9), pp. 2819~2858.
[21]Ju, J., H. Ma, Z. Wang and X. Zhu, 2024, “Trade Wars and Industrial Policy Competitions: Understanding the US-China Economic Conflicts”, Journal of Monetary Economics, 141, pp. 42~58.
[22]Krueger, A. O. and B. Tuncer, 1982, “An Empirical Test of the Infant Industry Argument”, American Economic Review, 72(5), pp. 1142~1152.
[23]Lane, N., 2025, “Manufacturing Revolutions: Industrial Policy and Networks in South Korea”, The Quarterly Journal of Economics.
[24]Lashkaripour, A. and V. Lugovskyy, 2023, “Profits, Scale Economies, and the Gains from Trade and Industrial Policy”, American Economic Review, 113(10), pp. 2759~2808.
[25]Liu, E., 2019, “Industrial Policies in Production Networks”, The Quarterly Journal of Economics, 134(4), pp. 1883~1948.
[26]Morrow, P. and D. Trefler, 2022, “How do Endowments Determine Trade? Quantifying the Output Mix, Factor Price, and Skill-biased Technology Channels”, Journal of International Economics, 137: 103620.
[27]Ossa, R., 2014, “Trade Wars and Trade Talks with Data”, American Economic Review, 104(12), pp. 4104~4146.
[28]Veldkamp, L. and C. Chung, 2024, “Data and the Aggregate Economy”, Journal of Economic Literature, 62(2), pp. 458~484.
[29]Wang, Y. and W. Wang, 2025, “Trade Theories in the Digital Age”, China & World Economy, 33(2), pp. 1~40.
[1] 栗宇丹, 郭雅婷, 罗炜. 产业政策与债券发行定价效率[J]. 金融研究, 2025, 539(5): 152-170.
[2] 钱雪松, 郑德昌, 杜立. 产业政策与企业委托贷款资金配置 ——来自中国上市制造业企业的经验证据[J]. 金融研究, 2023, 518(8): 19-36.
[3] 诸竹君, 宋学印, 张胜利, 陈丽芳. 产业政策、创新行为与企业加成率——基于战略性新兴产业政策的研究[J]. 金融研究, 2021, 492(6): 59-75.
[4] 邓路, 刘欢, 侯粲然. 金融资产配置与违约风险:蓄水池效应,还是逐利效应?[J]. 金融研究, 2020, 481(7): 172-189.
[5] 李广子, 刘力. 产业政策与信贷资金配置效率[J]. 金融研究, 2020, 479(5): 114-131.
[6] 巫岑, 黎文飞, 唐清泉. 产业政策与企业资本结构调整速度[J]. 金融研究, 2019, 466(4): 92-110.
[7] 郭杰, 王宇澄, 曾博涵. 国家产业政策、地方政府行为与实际税率——理论分析和经验证据[J]. 金融研究, 2019, 466(4): 56-74.
[8] 李文贵, 邵毅平. 产业政策与民营企业国有化[J]. 金融研究, 2016, 435(9): 177-192.
[1] 江娇, 刘红忠, 曾剑平. 中国股票网络论坛的信息含量分析段[J]. 金融研究, 2017, 448(10): 178 -192 .
[2] 王靖一. 现金贷果如洪水猛兽?——来自断点回归设计的证据[J]. 金融研究, 2018, 461(11): 153 -171 .
[3] 张莉, 魏鹤翀, 欧德赟. 以地融资、地方债务与杠杆——地方融资平台的土地抵押分析[J]. 金融研究, 2019, 465(3): 92 -110 .
[4] 张国峰, 王永进, 李坤望. 贸易自由化对制造业企业现金储蓄的影响——预防性动机还是投资挤压?[J]. 金融研究, 2019, 471(9): 19 -38 .
[5] 王遥, 潘冬阳, 彭俞超, 梁希. 基于DSGE模型的绿色信贷激励政策研究[J]. 金融研究, 2019, 473(11): 1 -18 .
[6] 李波, 朱太辉. 银行价格竞争、融资约束与企业研发投资——基于“中介效应”模型的实证研究[J]. 金融研究, 2020, 481(7): 134 -152 .
[7] 陈登科, 陈诗一. 中国财政支出乘数研究——基于金融摩擦与“超低利率”的视角[J]. 金融研究, 2017, 450(12): 17 -32 .
[8] 刘晓光, 杨连星. 双边政治关系、东道国制度环境与对外直接投资[J]. 金融研究, 2016, 438(12): 17 -31 .
[9] 陈国进, 丁赛杰, 赵向琴. 绿色结构性货币政策、政策预期与经济绿色转型[J]. 金融研究, 2024, 526(4): 1 -19 .
[10] 陈雨露. 当前全球中央银行研究的若干重点问题[J]. 金融研究, 2020, 476(2): 1 -14 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1