Please wait a minute...
金融研究  2025, Vol. 540 Issue (6): 1-20    
  本期目录 | 过刊浏览 | 高级检索 |
央行预期管理能缓解银行流动性囤积吗?——基于前瞻性文本情绪指数的实证检验
蒋海, 孙娜, 李欣明
暨南大学经济学院/金融研究所,广东广州 510632;
南开大学金融学院,天津 300350
Can Central Bank Expectation Management Alleviate Bank Liquidity Hoarding? An Empirical Test Based on Forward-looking Textual Sentiment Index
JIANG Hai, SUN Na, LI Xinming
School of Economics/Research Institute of Finance, Jinan University;
School of Finance, Nankai University
下载:  PDF (960KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 银行流动性囤积问题在一定程度上削弱了金融业服务实体经济的能力,其背后的关键原因是经济主体预期的不确定性。本文对《货币政策执行报告》进行文本分析并构建情绪指数,以探究预期管理对银行流动性囤积水平的影响。研究发现:第一,积极的前瞻性文本情绪能显著降低银行流动性囤积水平,并通过降低信贷收益不确定性和提高银行风险容忍度两个作用机制实现;第二,预期管理效果在流动性囤积水平适中的银行更加明显;第三,城市商业银行和农村商业银行受前瞻性文本情绪的影响更大;第四,银行创新能力提升、金融监管强度增加及经济繁荣程度提高,均会强化前瞻性文本情绪对流动性囤积的缓解作用。本文研究对进一步完善预期管理有一定的借鉴参考意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋海
孙娜
李欣明
关键词:  预期管理  流动性囤积  信号效应  机器学习    
Summary:  A key role of financial institutions is to serve the real economy. However, in practice, loose monetary policies have failed to translate into effective credit easing. After the central bank injected liquidity into the banking system, due to the constraints of both the supply side and the demand side, the liquidity was hoarded in the banking system. A major cause of this liquidity hoarding lies in public pessimistic expectations, making expectation management crucial for addressing this issue. This leads to a critical practical question: Can central bank expectations management effectively alleviate bank liquidity hoarding?
To answer the question, this paper employs machine learning methods to construct a sentiment index for the forward-looking content of the China Monetary Policy Report, which serves as a measure of central bank's expected management policy. Meanwhile, this paper uses unbalanced panel data of banks from 2009 to 2022 to empirically test whether the central bank's expectation management can alleviate banks' liquidity hoarding. This paper also conducts a series of robustness tests, including the instrumental variable method, text content splitting, alternative sentiment measurement method, and alternative sample.
The empirical results show: First, proactive forward-looking text sentiment alleviates liquidity hoarding among banks by reducing credit yield uncertainty and enhancing risk tolerance. Second, this sentiment significantly suppresses liquidity hoarding in banks with moderate liquidity levels (35%-75% percentile interval), while showing limited effect on those hoarding high or low liquidity. Third, the suppressive impact varies across bank sizes: it is notably effective for city commercial banks and rural commercial banks, but less pronounced in state-owned banks, joint-stock banks, and small rural financial institutions. Fourth, banks' innovation capacity enhances the suppressive effect, which becomes more pronounced when regulatory measures and innovation efforts reinforce each other. Finally, forward-looking text sentiment demonstrates stronger liquidity hoarding suppressive effects during economic upturns.
Based on the empirical results, this paper proposes the following policy recommendations. First, optimize the forward guidance tone of the central bank to alleviate liquidity hoarding in the banking system. China is in the stage of gradual economic recovery, but the expectations of market entities such as banks remain weak. It is recommended that the central bank should emphasize confidence in achieving potential growth targets when releasing the Monetary Policy Report. Simultaneously, it should clearly communicate its commitment to maintaining reasonable liquidity through observable indicators such as target ranges for market interest rates. Second, implement differentiated expectation management strategies. Strengthen the forward guidance of small and medium-sized banks, including differentiated rediscount quotas and assessment standards. Promoting these banks to release liquidity can accurately meet the financing needs of small, medium and micro enterprises. Third, establish an expectation management mechanism aligned with economic cycles. During downturns, the emotional tone conveyed in the Monetary Policy Report has limited effectiveness in curbing liquidity hoarding. It is recommended that the central bank further strengthen expectation management through other means, such as increasing the frequency of briefings and press conferences, and setting up a policy feedback section on the official website of the People's Bank of China. Fourth, banks should be encouraged to enhance their innovation capabilities. In order to give full play to the expected management effect of the central bank, banks need to strengthen their innovation capabilities. Only when banks can carry out credit supply and post-loan management more accurately can they realize the incentive compatibility between high-quality development of banks and the expected management goals of the central bank. Finally, regulatory policies should be coordinated with expected management policies. Regulators should establish a more comprehensive information disclosure mechanism to enhance market transparency and banks' trust in forward-looking guidance.
Keywords:  Expectation Management    Liquidity Hoarding    Signaling Effect    Machine Learning
JEL分类号:  E58   G21   D81  
基金资助: *本文感谢国家自然科学基金(72103106、72495155)、国家社会科学基金(23AZD024)、广东省基础与应用基础研究基金(2025A1515012937)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  李欣明,金融学博士,教授,南开大学金融学院,E-mail:xinming@nankai.edu.cn.   
作者简介:  蒋海,管理学博士,教授,暨南大学经济学院/金融研究所,E-mail:tjiangh@jnu.edu.cn.
孙娜,博士研究生,暨南大学经济学院,E-mail:sunna_018@126.com.
引用本文:    
蒋海, 孙娜, 李欣明. 央行预期管理能缓解银行流动性囤积吗?——基于前瞻性文本情绪指数的实证检验[J]. 金融研究, 2025, 540(6): 1-20.
JIANG Hai, SUN Na, LI Xinming. Can Central Bank Expectation Management Alleviate Bank Liquidity Hoarding? An Empirical Test Based on Forward-looking Textual Sentiment Index. Journal of Financial Research, 2025, 540(6): 1-20.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V540/I6/1
[1] 陈良源和林建浩,2024,《货币政策预期管理的策略选择:模糊沟通与精确沟通》,《管理世界》第12期,第63~78+94+79~83页。
[2] 方意、和文佳和王琦,2024,《非核心负债业务、流动性渠道和银行业系统性风险:理论模型与经验分析》,《金融研究》第3期,第20~37页。
[3] 顾海峰和于家珺,2019,《中国经济政策不确定性与银行风险承担》,《世界经济》第11期,第148~171页。
[4] 郭豫媚、陈伟泽和陈彦斌,2016,《中国货币政策有效性下降与预期管理研究》,《经济研究》第1期,第28~41+83页。
[5] 郭豫媚和郭俊杰,2024,《不确定性会影响央行沟通效果吗》,《财贸经济》第6期,第88~104页。
[6] 姜富伟、胡逸驰和黄楠,2021,《央行货币政策报告文本信息、宏观经济与股票市场》,《金融研究》第6期,第95~113页。
[7] 姜富伟、李梦如和孟令超,2024,《调预期、防风险:央行金融稳定沟通效果研究——基于文本分析的视角》,《经济学(季刊)》第6期,第2025~2040页。
[8] 吕之安、刘莉亚和谭姝颖等,2024,《央行沟通“简明—专业”权衡与公众行动》,《经济研究》第11期,第21~37页。
[9] 宋科、徐蕾和李振等,2022,《ESG投资能够促进银行创造流动性吗?——兼论经济政策不确定性的调节效应》,《金融研究》第2期,第61~79页。
[10] 万志宏和曾刚,2012,《后危机时代美国银行体系的流动性囤积与货币政策传导》,《国际金融研究》第10期,第21~28页。
[11] 王辉、朱家雲和胡诣聪,2023,《央行预期引导可以降低银行系统性金融风险吗?——基于市场解读偏离的视角》,《金融研究》第9期,第1~19页。
[12] 王宇伟和刘宏雅,2023,《央行言辞沟通与银行信贷投放:总量与结构效应》,《金融研究》第11期,第78~96页。
[13] 魏旭和周伊敏,2022,《流动性监管、系统性风险与社会福利——一个理论分析框架》,《经济学(季刊)》第5期,第1619~1638页。
[14] 项后军、高鹏飞和曾琪,2023,《银行风险承担渠道、流动性囤积与货币政策传导的“梗阻效应”研究》,《国际金融研究》第1期,第74~84页。
[15] 许文彬、赵霖和李志文,2019,《金融监管与金融创新的共同演化分析——一个基于非线性动力学的金融监管分析框架》,《经济研究》第5期,第81~97页。
[16] 尹龙,2005,《金融创新理论的发展与金融监管体制演进》,《金融研究》第3期,第7~15页。
[17] 张成思和计兴辰,2017,《善言为贤:货币政策前瞻性指引的中国实践》,《国际金融研究》第12期,第3~16页。
[18] Aastveit,K. A.,G. J. Natvik,and S. Sola,2017, “Economic Uncertainty and the Influence of Monetary Policy”,Journal of International Money and Finance,76,pp. 50~67.
[19] Angeloni,I.,Faia,E.,and Duca,M. L.,2015,“Monetary Policy and Risk Taking”,Journal of Economic Dynamics and Control,52,pp. 285~307
[20] Arellano,C.,Y. Bai, and P. J. Kehoe, 2019, “Financial Frictions and Fluctuations in Volatility”, Journal of Political Economy,127(5),pp, 2049~2103.
[21] Arping,S.,2017, “Deposit Competition and Loan Markets”, Journal of Banking and Finance, 80: 108-118.
[22] Berger,A.N., O. Guedhami ,H.H. Kim and X. Li, 2022, “Economic Policy Uncertainty and Bank Liquidity Hoarding”, Journal of Financial Intermediation,49,100893.
[23] Bordo,M.D., J.V. Duca, C. Koch, 2016, Economic Policy Uncertainty and the Credit Channel: Aggregate and Bank Level US Evidence over Several Decades”, Journal of Financial Stability, 26, pp.90~106.
[24] Caballero,R.J. and A. Simsek, 2013, “Fire Sales in a Model of Complexity”, Journal of Finance, 68(6), pp. 2549~2587.
[25] Friedman,B. M.,and K. N. Kuttner,2010, “Implementation of Monetary Policy:How Do Central Banks Set Interest Rates?”, Handbook of Monetary Economics,3,pp. 1345~1438,Elsevier.
[26] Gardner,B.,C. Scotti and C. Vega, 2022, “Words Speak as Loudly as Actions: Central Bank Communication and the Response of Equity Prices to Macroeconomic Announcements”, Journal of Econometrics,231(2), pp.387~409.
[27] Gorton,G., 2009, “Information, Liquidity, and the (Ongoing)Panic of 2007”, American Economic Review,99(2), pp.567~572.
[28] Hansen,S. and M. McMahon, 2016, “Shocking Language: Understanding the Macroeconomic Effects of Central Bank Communication”, Journal of International Economics,99, pp.S114~S133.
[29] Jiang,F.,Lee,J.,Martin,X.,and Zhou,G,2019,“Manager Sentiment and Stock Returns”,Journal of Financial Economics,132(1),pp. 126~149.
[30] Nguyen,N. H.,and H. V. Phan,2017, “Policy Uncertainty and Mergers and Acquisitions”, Journal of Financial and Quantitative Analysis,52(2),pp. 613~644.
[1] 宗计川, 吴庆帮. 流动性冲击与系统重要性银行的稳定作用[J]. 金融研究, 2025, 538(4): 21-38.
[2] 郭豫媚, 王航, 郭田勇, 郭俊杰. 中央银行通货膨胀预期管理有效性评估——基于文本通货膨胀预期指数的研究[J]. 金融研究, 2025, 538(4): 1-20.
[3] 宋芳秀, 宋奎壁. 公众异质预期、信息成本与货币政策传导[J]. 金融研究, 2024, 529(7): 1-19.
[4] 牛晓健, 强皓凡, 吕斌, 王聪. 企业跨界竞争与债务违约风险——基于机器学习与复杂网络方法[J]. 金融研究, 2024, 525(3): 150-168.
[5] 陈海强, 胡晓雪, 李东旭. 金融考核“绿色化”与污染企业绿色并购——基于信号效应的视角[J]. 金融研究, 2024, 524(2): 131-148.
[6] 杨子晖, 张平淼, 林师涵. 股票市场与债券市场的风险联动与预测研究——基于机器学习的前沿视角[J]. 金融研究, 2024, 523(1): 131-149.
[7] 应千伟, 韩梦锐, 黄丽. 并购重组问询函延期答复研究[J]. 金融研究, 2023, 514(4): 168-186.
[8] 王宇伟, 刘宏雅. 央行言辞沟通与银行信贷投放:总量与结构效应[J]. 金融研究, 2023, 521(11): 78-96.
[9] 孙三百, 张青萍, 李冉. 中国财富机会不平等的测度与源泉识别——兼论共同富裕的路径选择[J]. 金融研究, 2023, 521(11): 97-114.
[10] 华秀萍, 程思睿, 李婉宁, 王勇. 非正式融资中的文化力量 ——企业文化对商业信用的影响[J]. 金融研究, 2023, 520(10): 186-206.
[11] 姜富伟, 林奕皓, 马甜. “去刚兑”背景下的企业债券违约风险:机器学习预警和经济机制探究[J]. 金融研究, 2023, 520(10): 85-103.
[12] 陆瑶, 施函青. 我国科技企业融资的决定因素研究——基于科创板企业的机器学习分析[J]. 金融研究, 2022, 507(9): 132-151.
[13] 杨子晖, 张平淼, 林师涵. 系统性风险与企业财务危机预警——基于前沿机器学习的新视角[J]. 金融研究, 2022, 506(8): 152-170.
[14] 闫先东, 高文博. 中央银行信息披露与通货膨胀预期管理——我国央行信息披露指数的构建与实证检验[J]. 金融研究, 2017, 446(8): 35-49.
[15] 马理, 何梦泽, 刘艺. 基于适应性预期的货币政策传导研究[J]. 金融研究, 2016, 434(8): 19-33.
[1] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[2] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[3] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[4] 王茵田, 黄张凯, 陈梦. “不平等条约?”:我国对赌协议的风险因素分析[J]. 金融研究, 2017, 446(8): 117 -128 .
[5] 张璇, 王鑫, 刘碧. 吃喝费用、融资约束与企业出口行为——世行中国企业调查数据的证据[J]. 金融研究, 2017, 443(5): 176 -190 .
[6] 彭青青, 李宏彬, 施新政, 吴斌珍. 中国市场化过程中城镇   女性劳动参与率变化趋势[J]. 金融研究, 2017, 444(6): 33 -49 .
[7] 卢洪友, 余锦亮, 张楠. 纵向行政管理结构与地方政府财政支出规模[J]. 金融研究, 2017, 448(10): 35 -51 .
[8] 孔东民, 项君怡, 代昀昊. 中小企业过桥贷款投融资的财务效应——来自我国中小企业版上市公司的证据[J]. 金融研究, 2017, 441(3): 145 -158 .
[9] 金鹏辉, 王营, 张立光. 稳增长条件下的金融摩擦与杠杆治理[J]. 金融研究, 2017, 442(4): 78 -94 .
[10] 郭婧, 岳希明. 财政收支因果关系研究文献综述[J]. 金融研究, 2017, 440(2): 179 -196 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1