Please wait a minute...
金融研究  2024, Vol. 529 Issue (7): 152-169    
  本期目录 | 过刊浏览 | 高级检索 |
中国劳动收入份额的演变趋势及基于制造业的驱动力探索
尹恒, 张道远, 李辉
中国人民大学国家发展与战略研究院,北京 100872;
山东社会科学院财政金融研究所,山东济南 250002;
武汉大学经济与管理学院,湖北武汉 430072
The Evolution of Chinese Labor Share and Drivers based on Manufacturing during 1998-2016
YIN Heng, ZHANG DaoYuan, LI Hui
National Academy of Development and Strategy, Renmin University of China; Institute of Finance, Shandong Academy of Social Sciences; Economics and Management School, Wuhan University
下载:  PDF (1327KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 劳动收入份额是决定国民收入分配格局的基础。本文使用覆盖1998—2016年的大样本微观数据,描述这一时期企业劳动收入份额演变趋势,并构建结构估计模型、运用多种分解方法探索其主要驱动力。结论如下:第一,1998—2016年中国企业劳动收入份额呈现明显的U型趋势,2007为其低谷。特别地,金融危机后全行业劳动收入份额一致上升,2016年比2007年增长近四成。第二,持续经营企业是样本期内制造业劳动收入份额演变的主体,其对制造业总体劳动收入份额变化的贡献超过80%。第三,2007年后持续经营企业人均销售增速相对于人均工资增速明显放缓,是样本期内劳动收入份额U型逆转的关键驱动因素。第四,技术进步或劳动市场制度变化等因素,很可能是2007年后劳动收入份额下滑趋势逆转的主要驱动力。本文认为,对近年来劳动收入份额的改善不应过于乐观,应该继续强化改善中国要素分配格局和收入分配状况的各项政策措施。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹恒
张道远
李辉
关键词:  劳动收入份额  企业异质性  有偏技术进步  结构估计    
Summary:  Labor share refers to the proportion of compensation received by workers in newly created value within a country or region during a specific period. This indicator reflects the distribution of national income between workers and capital owners, and is crucial for understanding income distribution patterns and promoting sustainable economic development. For a long time, the labor share in many countries has remained relatively stable, a phenomenon that Kaldor included as one of the “stylized facts” of economic growth. However, doubts about the stability of labor share have persisted. In recent years, the global trend of declining labor share has attracted widespread attention and discussion in academic circles. As the world's second-largest economy, changes in China's labor share have significant implications for the global economic landscape. Although existing research has extensively examined China's labor share from a macroeconomic perspective, the calculation of labor share at the macro level is highly sensitive to the accounting scope of labor compensation. Moreover, macro-level analyses often rely on simplified micro-environment settings, sacrificing the rich information contained in micro-heterogeneity, resulting in an “incomplete explanation” of labor share changes and their influencing factors.
In light of this, this paper attempts to examine the evolution of China's labor share and its driving factors from a micro perspective to address the limitations of existing research. We combine the China Industrial Firm Database and the National Tax Survey Database to construct a large-sample firm dataset with broad coverage and a long time-span. Based on this dataset, we describe the trends in China's labor share from 1998 to 2016, employ various decomposition methods to identify the underlying driving forces, and quantify the impact of various factors through a structural estimation model. Our findings are as follows: First, China's labor share exhibited a distinct U-shaped trend between 1998 and 2016, with 2007 as the lowest point. Notably, the labor share across all industries consistently rose after the 2008 financial crisis. This finding provides micro-level support for the upward trend in macroeconomic labor share during the same period. Second, dynamic decomposition results show that incumbent firms are the main contributors to the evolution of labor share in the manufacturing sector during the sample period, with their contribution to total labor share changes exceeding four times the combined contribution of entering and exiting firms. Third, decomposition results of the wage-to-sales revenue ratio indicate that understanding the significant slowdown in per capita sales growth relative to per capita wage growth for incumbent firms after 2007 is key to exploring the driving factors behind the U-shaped reversal of labor share during the sample period. Fourth, structural estimation results show that demand-side factors, represented by markup rates, can only explain a small portion of the changes in labor share, while production-side scale effects are not the main drivers of labor share changes. Considering all evidence, this paper argues that biased technological progress or changes in labor market institutions are likely the key factors behind the reversal of China's declining labor share trend after 2007.
The potential contributions of this paper are threefold: First, it provides new micro-evidence for the U-shaped reversal of China's labor share based on a large-sample firm database. Second, it broadens the approach of analyzing and evaluating the driving forces of labor share by decomposing them into production-side and demand-side based on firm optimization behavior and constructing a structural estimation system to separate the effects of different factors. Finally, it excludes the possibility of production-side scale effects and demand-side product market power acting as primary influencing factors. This notably differs from recent conclusions on the driving forces of U.S. labor share, which found demand-side firm market power to be the main cause.
It should be noted that as an initial attempt to explore the evolution of China's labor share and its underlying driving factors from a micro perspective, this paper has evident limitations and room for improvement. First, we were unable to directly estimate labor-augmenting productivity, thus limiting our ability to further discuss its mechanism of influencing labor share in depth. Second, our model does not consider labor market frictions, making it impossible to directly evaluate the impact of labor market institutional factors on labor share. How to simultaneously identify multiple dimensions of firm heterogeneity, such as the direction of technological progress, product market monopoly power, labor market monopoly power, and labor adjustment costs, in one comprehensive model and directly assess their impact on Labor share remains a challenging issue and a worthwhile direction for future research.
Keywords:  Labor Share    Firm Heteroge Neity    Biased Technological Change    Structural Estimation
JEL分类号:  D21   D24   D33  
基金资助: *本文感谢国家自然科学基金(72173131)的资助。感谢匿名评审专家的宝贵意见,文责自负。
通讯作者:  张道远,经济学博士,助理研究员,山东社会科学院财政金融研究所,E-mail:2020000160@ruc.edu.cn.   
作者简介:  尹 恒,经济学博士,教授,中国人民大学国家发展与战略研究院,E-mail:yheng@ruc.edu.cn.李 辉,经济学博士,讲师,武汉大学经济与管理学院,E-mail:lihui_econo@163.com.
引用本文:    
尹恒, 张道远, 李辉. 中国劳动收入份额的演变趋势及基于制造业的驱动力探索[J]. 金融研究, 2024, 529(7): 152-169.
YIN Heng, ZHANG DaoYuan, LI Hui. The Evolution of Chinese Labor Share and Drivers based on Manufacturing during 1998-2016. Journal of Financial Research, 2024, 529(7): 152-169.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V529/I7/152
[1]龚刚和杨光,2010,《从功能性收入看中国收入分配的不平等》,《中国社会科学》第2期,第54-68+221页。
[2]焦音学和柏培文,2020,《三大产业劳动收入份额、经济增长及收入差距》,《数量经济技术经济研究》第4期,第26~45页。
[3]蓝嘉俊、方颖和马天平,2019,《就业结构、刘易斯转折点与劳动收入份额:理论与经验研究》,《世界经济》第6期,第94~118页。
[4]李稻葵、刘霖林和王红领,2009,《GDP中劳动份额演变的U型规律》,《经济研究》第1期,第70~82页。
[5]刘啟仁和黄建忠,2016,《产品创新如何影响企业加成率》,《世界经济》第11期,第28~53页。
[6]刘亚琳、申广军和姚洋,2022,《我国劳动收入份额:新变化与再考察》,《经济学(季刊)》第5期,第1~22页。
[7]卢国军、崔小勇和王弟海,2023,《自动化技术、结构转型与中国收入分配格局的演化》,《金融研究》第4期,第19~35页。
[8]陆雪琴和田磊,2020,《企业规模分化与劳动收入份额》,《世界经济》第9期,第27~48页。
[9]罗明津和铁瑛,2021,《企业金融化与劳动收入份额变动》,《金融研究》第8期,第100~118页。
[10]聂辉华和贾瑞雪,2011,《中国制造业企业生产率与资源误置》,《世界经济》第7期,第27~42页。
[11]施新政、高文静、陆瑶和李蒙蒙,2019,《资本市场配置效率与劳动收入份额——来自股权分置改革的证据》,《经济研究》第12期,第21~37页。
[12]文雁兵和陆雪琴,2018,《中国劳动收入份额变动的决定机制分析——市场竞争和制度质量的双重视角》,《经济研究》第9期,第83~98页。
[13]杨汝岱,2015,《中国制造业企业全要素生产率研究》,《经济研究》第2期,第61~74页。
[14]张车伟和赵文,2015,《中国劳动报酬份额问题——基于雇员经济与自雇经济的测算与分析》,《中国社会科学》第12期,第90-112+206-207页。
[15]张杰、卜茂亮和陈志远,2012,《中国制造业部门劳动报酬比重的下降及其动因分析》,《中国工业经济》第5期,第57~69页。
[16]赵秋运和张建武,2013,《中国劳动收入份额的变化趋势及其驱动机制新解——基于国际贸易和最低工资的视角》,《金融研究》第12期,第44~56页。
[17]Acemoglu, D. 2002. “Directed Technical Change”, The Review of Economic Studies, 69(4): pp.781~809.
[18]Ackerberg, D.A., K. Caves, and G. Frazer. 2015. “Identification Properties of Recent Production Function Estimators”, Econometrica, 83(6): pp.2411~2451.
[19]Autor, D., D. Dorn, L.F. Katz, C. Patterson, and J. Van Reenen. 2020. “The Fall of the Labor Share and the Rise of Superstar Firms”, The Quarterly Journal of Economics, 135(2): pp.645~709.
[20]De Loecker, J., J. Eeckhout, and G. Unger. 2020. “The Rise of Market Power and the Macroeconomic Lmplications”, The Quarterly Journal of Economics, 135(2): pp.561~644.
[21]De Loecker, J. and F. Warzynski. 2012. “Markups and Firm-level Export Status”, American Economic Review, 102(6): pp.2437~2471.
[22]Doraszelski, U. and J. Jaumandreu. 2018. “Measuring the Bias of Technological Change”, Journal of Political Economy, 126: pp.1027~1084.
[23]Elsby, M.W., B. Hobijn, and A. Şahin. 2013. “The Decline of the US labor Share”, Brookings Papers on Economic Activity, 2013(2): pp.1~63.
[24]Grossman, G.M. and E. Oberfield. 2022. “The Elusive Explanation for the Declining Labor Share”, Annual Review of Economics, 14(1): pp.93~124.
[25]Kaldor, N. 1955. “Alternative Theories of Distribution”, The Review of Economic Studies, 23(2): pp.83~100.
[26]Karabarbounis, L. and B. Neiman. 2014. “The Global Decline of the Labor Share”, The Quarterly Journal of Economics, 129(1): pp.61~103.
[27]Kehrig, M. and N. Vincent. 2021. “The Micro-level Anatomy of the Labor Share Decline”, The Quarterly Journal of Economics, 136(2): pp.1031~1087.
[28]Keynes, J.M. 1939. “Relative Movements of Real Wages and Output”, The Economic Journal, 49(193): pp.34~51.
[29]Krueger, A.B. 1999. “Measuring Labor's Share”, American Economic Review, 89(2): pp.45~51.
[30]Melitz, M.J. and S. Polanec. 2015. “Dynamic Olley-Pakes Productivity Decomposition with Entry and Exit”, The Rand Journal of Economics, 46(2): pp.362~375.
[31]Oberfield, E. and D. Raval. 2021. “Micro Data and Macro Technology”, Econometrica, 89(2): pp.703~732.
[32]Olley, G.S. and A. Pakes. 1996. “The Dynamics of Productivity in the Telecommunications Equipment”, Econometrica, 64(6): pp.1263~1297.
[33]Solow, R.M. 1958. “A Skeptical Note on the Constancy of Relative Shares”, The American Economic Review, 48(4): pp.618~631.
[34]Yeh, C., C. Macaluso, and B. Hershbein. 2022. “Monopsony in the US Labor Market”, American Economic Review, 112(7): pp.2099~2138.
[1] 侯成琪, 岳树华, 师恩泽, 王桂军. 中国劳动收入份额的周期波动[J]. 金融研究, 2024, 527(5): 58-76.
[2] 卞元超, 白俊红. 金融地理扩张与中国企业劳动收入份额的变迁[J]. 金融研究, 2024, 525(3): 56-74.
[3] 李朝前, 沈悦, 姚树洁, 安磊. 金融地理可及性与劳动收入份额——基于融资成本与人力资本结构视角[J]. 金融研究, 2023, 519(9): 150-167.
[4] 卢国军, 崔小勇, 王弟海. 自动化技术、结构转型与中国收入分配格局的演化[J]. 金融研究, 2023, 514(4): 19-35.
[5] 马慧, 陈胜蓝, 刘晓玲, 王鹏程. 金融强监管与劳动收入份额——基于资管新规的经验证据[J]. 金融研究, 2023, 522(12): 132-149.
[6] 王雅琦, 王瑶, 张礼卿. 汇率波动对出口稳定的影响:中间品进口的作用[J]. 金融研究, 2023, 511(1): 75-93.
[7] 江轩宇, 林莉. 会计信息可比性与劳动收入份额[J]. 金融研究, 2022, 502(4): 57-76.
[8] 罗明津, 铁瑛. 企业金融化与劳动收入份额变动[J]. 金融研究, 2021, 494(8): 100-118.
[9] 孙天阳, 成丽红. 协同创新网络与企业出口绩效——基于社会网络和企业异质性的研究[J]. 金融研究, 2020, 477(3): 96-114.
[10] 许家云. 进口与企业员工收入——以中国制造业企业为例[J]. 金融研究, 2020, 484(10): 131-149.
[11] 魏浩, 白明浩, 郭也. 融资约束与中国企业的进口行为[J]. 金融研究, 2019, 464(2): 98-116.
[12] 刘莉亚, 何彦林, 王照飞, 程天笑. 融资约束会影响中国企业对外直接投资吗?——基于微观视角的理论和实证分析[J]. 金融研究, 2015, 422(8): 124-140.
[13] 蒋冠宏. 企业异质性和对外直接投资——基于中国企业的检验证据[J]. 金融研究, 2015, 426(12): 81-96.
[1] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[2] 邓路, 刘瑞琪, 江萍. 公司超额银行借款会导致过度投资吗?[J]. 金融研究, 2017, 448(10): 115 -129 .
[3] 江娇, 刘红忠, 曾剑平. 中国股票网络论坛的信息含量分析段[J]. 金融研究, 2017, 448(10): 178 -192 .
[4] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[5] 李万福, 杜静, 张怀. 创新补助究竟有没有激励企业创新自主投资——来自中国上市公司的新证据[J]. 金融研究, 2017, 448(10): 130 -145 .
[6] 步丹璐, 狄灵瑜. 治理环境、股权投资与政府补助[J]. 金融研究, 2017, 448(10): 193 -206 .
[7] 李丹, 庞晓波, 方红生. 财政空间与中国政府债务可持续性[J]. 金融研究, 2017, 448(10): 1 -17 .
[8] 康书隆, 余海跃, 刘越飞. 住房公积金、购房信贷与家庭消费——基于中国家庭追踪调查数据的实证研究[J]. 金融研究, 2017, 446(8): 67 -82 .
[9] 纪志宏, 曹媛媛. 信用风险溢价还是市场流动性溢价:基于中国信用债定价的实证研究[J]. 金融研究, 2017, 440(2): 1 -10 .
[10] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1