Please wait a minute...
金融研究  2024, Vol. 524 Issue (2): 94-112    
  本期目录 | 过刊浏览 | 高级检索 |
环境政策组合、信贷歧视与全要素生产率——基于企业治污投入的视角
刘凤良, 陈彦龙
中国人民大学经济学院, 北京 100872
Environmental Policy Combinations, Credit Discrimination, and Total Factor Productivity: A Perspective Based on Enterprise Pollution Control Investment
LIU Fengliang, CHEN Yanlong
School of Economics, Renmin University of China
下载:  PDF (1259KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 党的二十大报告指出,要完善支持绿色发展的财税、金融、投资、价格政策和标准体系。基于信贷歧视和企业治污投入的特征事实,本文构建了一个包含污染行业与清洁行业的动态一般均衡模型,引入环境税并内生化配套政策强度,从调错配和降污染两个目标维度,分析不同环境政策组合对于全要素生产率的影响。研究发现:虽然环境税能够缓解因信贷歧视而加剧的环境污染,但较高的税率也会过度抑制污染行业产出,从而形成偏向清洁行业的新的资源错配,而污染行业通过承担治污成本,能有效减少税收对各行业要素边际产出相等造成的扭曲,提升整体效率。本文提出,执行清洁生产补贴和绿色信贷贴息等配套政策,能更好地释放环境税“调错配、提效率、降污染”三重红利。通过区分信贷歧视强度和环境税率高低的三种不同场景,本文模拟出各场景下不同政策组合的效果,并给出配套政策措施最优排序,对利用好环境经济政策工具箱、系统构建环境经济治理体系,具有一定的理论启示与实践价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘凤良
陈彦龙
关键词:  环境政策组合  信贷歧视  全要素生产率  企业治污投入    
Summary:  On January 1, 2018, the Chinese government fully implemented the Environmental Protection Tax Law of the People's Republic of China. An environmental tax can help correct an imbalance in the economic structure that favors heavily polluting industries, while reducing environmental pollution. However, such an asymmetrical policy can also suppress economic activities in heavily polluting industries, leading to output losses and negatively impacting economic and environmental coordination. Therefore, an exploration of how the environmental economic policy toolbox can be fully utilized under different economic conditions and the timely selection of an optimal combination of environmental economic policies is urgently needed. Such research would support efforts to adjust resource allocation and the economic structure, incentivize green production vitality to improve efficiency, and reduce environmental pollution.
We first conduct an empirical analysis based on Chinese firm-level data to clarify the characteristics of pollution control and credit allocation among Chinese firms affected by the environmental tax. We then construct a dynamic general equilibrium model that includes both pollution-intensive and clean industries, introduce an environmental tax, and endogenize the intensity of the accompanying policies. Finally, we quantitively study the impacts of different environmental policy combinations on total factor productivity (TFP) in terms of misallocation and TFP losses caused by pollution. Our study shows that although an environmental tax can alleviate environmental pollution exacerbated by credit discrimination, a higher tax rate may excessively suppress the output of polluting enterprises, resulting in a new resource misallocation bias favoring clean industries. However, polluting enterprises can effectively reduce this distortion by bearing pollution control costs to equalize the marginal output across industries, thus promoting an improvement in overall efficiency. The study proposes that implementing complementary policies, such as clean production subsidies and green credit interest subsidies, can increase the likelihood of realizing the triple dividend of an environmental tax: correcting misallocation, improving efficiency, and reducing pollution.
By distinguishing three scenarios based on varying credit discrimination levels and environmental tax rates, this study simulates the effects of different policy combinations under various scenarios and ranks the optimal policy combinations. First, under a high environmental tax rate, imposing complementary policies, such as clean production subsidies and green credit interest subsidies, on both pollution-intensive and clean enterprises can incentivize pollution-intensive enterprises to increase their pollution control investment, thus mitigating the negative effects of the environmental tax. Second, under a low environmental tax rate, with limited tax revenue and a weak accompanying policy intensity, the effectiveness of policies imposed on both pollution-intensive and clean enterprises in terms of optimizing resource allocation is inferior to issuing directly subsidies to clean enterprises. Third, when credit discrimination is weak, optimal resource allocation can feasibly be achieved by imposing an environmental tax, without requiring other complementary policies. Therefore, allocating tax revenues directly to green investments can enable an improvement in environmental quality from a good to an excellent level.
The main contributions of this study are as follows. First, this study delineates the characteristics of firms' behavior under the condition of an environmental tax and simulates the effects of this tax and associated policy combinations in the Chinese context, thus enriching understanding of pollution phenomena and environmental policy formulation in China. Second, this study considers pollution control investment, a crucial factor in classical tax and subsidy theoretical research, and thus expands the explanatory power of classical tax theories to the environmental field. Third, this study focuses on resource allocation distortion caused by an asymmetric environmental tax and provides theoretical references regarding the design of asymmetric policy through counterfactual analysis. Fourth, by endogenizing different levels of accompanying policy intensity, this study enables comparison of the effects of different policies, thus providing an analytical framework for evaluating the coordination effects of environmental policies. This approach has certain theoretical and practical implications in terms of effectively utilizing the environmental economic policy toolbox to systematically construct an environmental-economic governance system.
Keywords:  Environmental Policy Combinations    Credit Discrimination    Total Factor Productivity    Enterprise Pollution Control Investment
JEL分类号:  E62   Q58   H23  
基金资助: * 本文感谢教育部人文社科重点研究基地重大项目(23JJD790012)的资助,感谢中国工业经济学会2022年学术年会、第四届中国能源环境与气候变化经济学者论坛和第二届香樟宏观经济学论坛与会者的积极反馈。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  陈彦龙,博士研究生,中国人民大学经济学院,E-mail:chenyanlong@ruc.edu.cn.   
作者简介:  刘凤良,经济学博士,教授,中国人民大学经济学院,E-mail:flliu@ruc.edu.cn.
引用本文:    
刘凤良, 陈彦龙. 环境政策组合、信贷歧视与全要素生产率——基于企业治污投入的视角[J]. 金融研究, 2024, 524(2): 94-112.
LIU Fengliang, CHEN Yanlong. Environmental Policy Combinations, Credit Discrimination, and Total Factor Productivity: A Perspective Based on Enterprise Pollution Control Investment. Journal of Financial Research, 2024, 524(2): 94-112.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V524/I2/94
[1] 范庆泉和张同斌,2018,《中国经济增长路径上的环境规制政策与污染治理机制研究》,《世界经济》第8期,第171~192页。
[2] 范庆泉、周县华和张同斌,2016,《动态环境税外部性、污染累积路径与长期经济增长——兼论环境税的开征时点选择问题》,《经济研究》第8期,第116~128页。
[3] 刘凤良和吕志华,2009,《经济增长框架下的最优环境税及其配套政策研究——基于中国数据的模拟运算》,《管理世界》第6期,第40~51页。
[4] 刘金科和肖翊阳,2022,《中国环境保护税与绿色创新:杠杆效应还是挤出效应?》,《经济研究》第1期,第72~88页。
[5] 刘锡良和文书洋,2019,《中国的金融机构应当承担环境责任吗?——基本事实、理论模型与实证检验》,《经济研究》第3期,第38~54页。
[6] 陆菁、鄢云和王韬璇,2021,《绿色信贷政策的微观效应研究——基于技术创新与资源再配置的视角》,《中国工业经济》第1期,第174~192页。
[7] 牛欢和严成樑,2021,《环境税收、资源配置与经济高质量发展》,《世界经济》第9期,第28~50页。
[8] 陶锋、赵锦瑜和周浩,2021,《环境规制实现了绿色技术创新的“增量提质”吗——来自环保目标责任制的证据》,《中国工业经济》第2期,第136~154页。
[9] 童健、刘伟和薛景,2016,《环境规制、要素投入结构与工业行业转型升级》,《经济研究》第7期,第43~57页。
[10] 王遥、潘冬阳、彭俞超和梁希,2019,《基于DSGE模型的绿色信贷激励政策研究》,《金融研究》第11期,第1~18页。
[11] 文书洋、刘浩和王慧,2022,《绿色金融、绿色创新与经济高质量发展》,《金融研究》第8期,第1~17页。
[12] 文书洋、张琳和刘锡良,2021,《我们为什么需要绿色金融?——从全球经验事实到基于经济增长框架的理论解释》,《金融研究》第12期,第20~37页。
[13] Aghion, P., A. Dechezleprêtre, D. Hemous, R. Martin and J. Van Reenen, 2016, “Carbon taxes, path dependency, and directed technical change: Evidence from the auto industry”, Journal of Political Economy, 124(1), pp.1~51.
[14] Annicchiarico, B. and F. Di Dio, 2015, “Environmental policy and macroeconomic dynamics in a new Keynesian model”, Journal of Environmental Economics and Management, 69, pp.1~21.
[15] Annicchiarico, B. and F. Di Dio, 2017, “GHG emissions control and monetary policy”, Environmental and Resource Economics, 67, pp.823~851.
[16] Benkhodja, M. T., V. Fromentin and X. Ma, 2023, “Macroeconomic effects of green subsidies”, Journal of Cleaner Production, 410, 137166.
[17] Bovenberg, A. L. and R. A. De Mooij, 1997, “Environmental tax reform and endogenous growth”, Journal of Public Economics, 63(2), pp.207~237.
[18] Brandt, L., T. Tombe and X. Zhu, 2013, “Factor market distortions across time, space and sectors in China”, Review of Economic Dynamics, 16(1), pp.39~58.
[19] Chang, C., K. Chen, D. F. Waggoner and T. Zha, 2016, “Trends and cycles in China's macroeconomy”, NBER Macroeconomics Annual, 30(1), pp.1~84.
[20] Constant, K., 2019, “Environmental policy and human capital inequality: A matter of life and death”, Journal of Environmental Economics and Management, 97, pp.134~157.
[21] Dao, N. T. and O. Edenhofer, 2018, “On the fiscal strategies of escaping poverty-environment traps towards sustainable growth”, Journal of macroeconomics, 55, pp.253~273.
[22] Dissou, Y. and L. Karnizova, 2016, “Emissions cap or emissions tax? A multi-sector business cycle analysis”, Journal of Environmental Economics and Management, 79, pp.169~188.
[23] Fan, H., Y. Peng, H. Wang and Z. Xu, 2021, “Greening through finance?”, Journal of Development Economics, 152, 102683.
[24] Fanti, L. and L. Gori, 2012, “Fertility and PAYG pensions in the overlapping generations model”, Journal of Population Economics, 25, pp.955~961.
[25] Fischer, C. and M. Springborn, 2011, “Emissions targets and the real business cycle: Intensity targets versus caps or taxes”, Journal of Environmental Economics and Management, 62(3), pp.352~366.
[26] Goodstein, E., 2003, “The death of the Pigovian tax? Policy implications from the double-dividend debate”, Land Economics, 79(3), pp.402~414.
[27] Heutel, G., 2012, “How should environmental policy respond to business cycles? Optimal policy under persistent productivity shocks”, Review of Economic Dynamics, 15(2), pp.244~264.
[28] Hsieh, C. T. and P. J. Klenow, 2009, “Misallocation and manufacturing TFP in China and India”, The Quarterly journal of economics, 124(4), pp.1403~1448.
[29] Li, Z. and J. Sun, 2015, “Emission taxes and standards in a general equilibrium with entry and exit”, Journal of Economic Dynamics and Control, 61, pp.34~60.
[30] Manova, K., 2013, “Credit constraints, heterogeneous firms, and international trade”, Review of Economic Studies, 80(2), pp.711~744.
[31] Nordhaus, W., 2014, A question of balance: Weighing the options on global warming policies, Yale University Press.
[32] Pang, A. and D. Shaw, 2011, “Optimal emission tax with pre-existing distortions”, Environmental Economics and Policy Studies, 13, pp.79~88.
[33] Qi, J., X. Tang and X. Xi, 2021. “The size distribution of firms and industrial water pollution: A quantitative analysis of China”, American Economic Journal: Macroeconomics, 13(1), pp.151~183.
[34] Raffin, N. and T. Seegmuller, 2014, “Longevity, pollution and growth”, Mathematical Social Sciences, 69, pp.22~33.
[35] Tombe, T. and J. Winter, 2015, “Environmental policy and misallocation: The productivity effect of intensity standards”, Journal of Environmental Economics and Management, 72, pp.137~163.
[1] 成程, 田轩, 徐照宜. 供应链金融与企业效率升级 ——来自上市公司公告与地方政策文件的双重证据[J]. 金融研究, 2023, 516(6): 132-149.
[2] 余泳泽, 庄海涛, 伏雨. 社会失信与全要素生产率——基于交易成本视角的研究[J]. 金融研究, 2023, 515(5): 58-76.
[3] 刘哲希, 王兆瑞, 吴韬. 老龄化与“高TFP贡献率、低增长”问题[J]. 金融研究, 2023, 522(12): 1-19.
[4] 徐尚昆, 王璐, 杨汝岱. 地权稳定与农业生产[J]. 金融研究, 2022, 504(6): 133-152.
[5] 文竹, 金涛. 关于中国经济增长模式的一个解释框架——基于“土地财政”的演进分析[J]. 金融研究, 2022, 502(4): 1-17.
[6] 倪红福. 扭曲因子、进口中间品价格与全要素生产率——基于非竞争型投入产出网络结构一般均衡模型事后核算方法[J]. 金融研究, 2022, 500(2): 21-39.
[7] 朱宁, 刘伟其, 于之倩, 王兵. 中国银行业结构性全要素生产率增长研究[J]. 金融研究, 2021, 493(7): 1-18.
[8] 公衍磊, 邓辛, 杨金强. 全要素生产率、产能利用率与企业金融资源配置——基于中国上市企业委托贷款公告数据的经验分析[J]. 金融研究, 2020, 481(7): 57-74.
[9] 李广子, 刘力. 产业政策与信贷资金配置效率[J]. 金融研究, 2020, 479(5): 114-131.
[10] 余泳泽, 王岳龙, 李启航. 财政自主权、财政支出结构与全要素生产率——来自230个地级市的检验[J]. 金融研究, 2020, 475(1): 28-46.
[11] 徐忠, 贾彦东. 中国潜在产出的综合测算及其政策含义[J]. 金融研究, 2019, 465(3): 1-17.
[12] 徐思远, 洪占卿. 信贷歧视下的金融发展与效率拖累[J]. 金融研究, 2016, 431(5): 51-64.
[13] 孔东民, 王亚男, 代昀昊. 为何企业上市降低了生产效率?——基于制度激励视角的研究[J]. 金融研究, 2015, 421(7): 76-97.
[14] 蒋冠宏. 企业异质性和对外直接投资——基于中国企业的检验证据[J]. 金融研究, 2015, 426(12): 81-96.
[15] 赵静梅, 傅立立, 申宇. 风险投资与企业生产效率:助力还是阻力?[J]. 金融研究, 2015, 425(11): 159-174.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[3] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 孙淑伟, 梁上坤, 阮刚铭, 付宇翔. 高管减持、信息压制与股价崩盘风险[J]. 金融研究, 2017, 449(11): 175 -190 .
[6] 江娇, 刘红忠, 曾剑平. 中国股票网络论坛的信息含量分析段[J]. 金融研究, 2017, 448(10): 178 -192 .
[7] 李万福, 杜静, 张怀. 创新补助究竟有没有激励企业创新自主投资——来自中国上市公司的新证据[J]. 金融研究, 2017, 448(10): 130 -145 .
[8] 步丹璐, 狄灵瑜. 治理环境、股权投资与政府补助[J]. 金融研究, 2017, 448(10): 193 -206 .
[9] 张成思, 党超. 基于双预期的前瞻性货币政策反应机制[J]. 金融研究, 2017, 447(9): 1 -17 .
[10] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1