Please wait a minute...
金融研究  2025, Vol. 545 Issue (11): 1-18    
  本期目录 | 过刊浏览 | 高级检索 |
金融科技、货币政策传导与消费——来自大科技平台个人用户的微观证据
王擎, 秦慧颖, 盛夏
西南财经大学中国金融研究院,四川成都 611130
FinTech, Transmission of Monetary Policy and Consumption: Micro Evidence from Individual Users of BigTech Platforms
WANG Qing, QIN Huiying, SHENG Xia
Institute of Chinese Financial Studies, Southwestern University of Finance and Economics
下载:  PDF (610KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 在经济下行压力下,需要更好地发挥货币政策对消费的提振作用。金融科技的发展有助于提升居民对市场利率的关注,这是否会畅通货币政策向消费的传导?本文构建了金融科技影响货币政策向消费传导的理论模型,并利用个人用户数据对理论机制进行验证。结果表明:第一,居民对金融科技产品的使用频次越高,其消费受宽松货币政策的影响越大,这意味着金融科技可能通过提高居民的利率敏感性,增强货币政策影响消费的直接效应;第二,居民对金融科技平台数字资产板块的使用频次越高,宽松货币政策通过减少数字储蓄来增加消费的程度越大,这意味着货币政策通过储蓄替代渠道发挥了作用;第三,居民对金融科技平台数字信贷板块的使用频次越高,宽松货币政策通过增加数字消费信贷来提升消费的程度越大,这意味着货币政策通过信贷成本渠道发挥了作用,且存在非对称效应。本研究为提高金融科技水平,进一步助力货币政策向消费传导提供了证据支撑和政策启示。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王擎
秦慧颖
盛夏
关键词:  货币政策  金融科技  居民消费    
Summary:  China's economy continues to face substantial downward pressure. In this context, the 2024 Central Economic Work Conference emphasized the importance of implementing a “moderately loose monetary policy,” while identifying “vigorously boost consumption, enhance investment efficiency, and comprehensively expand domestic demand” as the primary objectives of future economic planning. One of the primary objectives of monetary policy is to promote economic growth, with investment and consumption serving as the key drivers of this growth. Therefore, it is essential to ensure the effective of the monetary policy transmission mechanism in order to maximize the effectiveness of a moderately loose policy in stimulating consumption.
In recent years, China's interest rate liberalization reforms have progressed steadily, facilitating the relatively smooth transmission of monetary policy from intermediate targets to market interest rates. However, the transmission of market interest rates to the real economy has mainly occurred through corporate investment, whereas the transmission effect via household consumption remains underdeveloped. The transmission of market interest rates to consumption has been heavily dependent on traditional banks, which determine how policy rate information is conveyed to deposit and loan rates. This process demonstrates a degree of rigidity: on the deposit side, traditional banks typically leverage their strong market position to keep deposit rates as stable as possible, ensuring the stability of their funding sources. On the loan side, banks' consumer credit marketing practices often lead customers to overlook loan rate information. This situation results in low public awareness of changes in market interest rates, which may constrain the effectiveness of monetary policy transmission.
The rapid development of FinTech enables households to easily access a wide range of products on major tech platforms, enhancing the accessibility and convenience of financial services. Compared to traditional banking products, FinTech offerings face greater competition and more efficient pricing, which allows interest rates to more accurately reflect market rates. Consequently, FinTech adoption may increase residents' sensitivity to market interest rates, enhancing the efficiency of their transmission to household consumption. From this perspective, does FinTech facilitate the transmission of monetary policy to consumption? If so, what is the underlying transmission mechanism? Clarifying these questions holds substantial theoretical value and policy implications for improving the efficiency of China's monetary policy transmission.
Therefore, building on Aiyagari's (1994) household consumption decision model, this paper integrates FinTech factors to capture household sensitivity to market interest rates. This clarifies the theoretical mechanism by which FinTech facilitates the transmission of monetary policy to consumption. Furthermore, using Ant Group's micro-level dataset, we empirically investigate the impact of FinTech on the transmission of monetary policy to consumption.
This study draws the following main conclusions: First, frequent use of FinTech products amplifies the impact of accommodative monetary policy on consumption. This suggests that FinTech reduces frictions in interest rate transmission, enhances sensitivity to market rate changes, and strengthens the direct impact of monetary policy on consumption. Second, frequent use of a FinTech platform's digital asset products increases consumption by reducing digital savings under accommodative monetary policy, indicating that the policy operates through the savings substitution channel. Third, frequent use of a FinTech platform's digital credit products boosts consumption by expanding digital consumer credit under accommodative monetary policy. This evidence suggests that monetary policy influences consumption through the credit cost channel, which exhibits asymmetric effects.
This paper makes three primary contributions. First, it analyzes the direct effect of monetary policy on household consumption, emphasizing FinTech's role in enhancing market interest rate transmission and deepening our understanding of its impact. Second, it integrates FinTech's impact on household interest rate sensitivity into a benchmark consumption model, providing a flexible framework for future research on FinTech's influence on household decisions. Third, it uses unique micro-panel data from Ant Group to investigate how FinTech enhances transmission of the monetary policy to consumption, providing micro-level evidence of FinTech's role in macroeconomic regulation and contributing to the development of a theoretical framework for FinTech-enabled macroeconomic policy in China.
Keywords:  Monetary Policy    FinTech    Consumption
JEL分类号:  E52   D12   C33  
基金资助: * 本文感谢国家社会科学基金重大项目(22&ZD121),四川省自然科学基金青年项目(24NSFSC1089)和西南财经大学研究生代表性成果培育项目(JGS2024022)的资助,以及数字经济开放研究平台的支持(www.deor.org.cn)。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  盛 夏,经济学博士,副教授,西南财经大学中国金融研究院,E-mail: xsheng@swufe.edu.cn.   
作者简介:  王 擎,经济学博士,教授,西南财经大学中国金融研究院,E-mail: wqing@swufe.edu.cn.
秦慧颖,博士研究生,西南财经大学中国金融研究院,E-mail: qhy_econ@163.com.
引用本文:    
王擎, 秦慧颖, 盛夏. 金融科技、货币政策传导与消费——来自大科技平台个人用户的微观证据[J]. 金融研究, 2025, 545(11): 1-18.
WANG Qing, QIN Huiying, SHENG Xia. FinTech, Transmission of Monetary Policy and Consumption: Micro Evidence from Individual Users of BigTech Platforms. Journal of Financial Research, 2025, 545(11): 1-18.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V545/I11/1
[1]何剑和魏涛,2022,《数字金融削弱了货币政策有效性吗?——来自上市公司投资行为的证据》,《财贸研究》第2期,第52~67页。
[2]黄益平和黄卓,2018,《中国的数字金融发展:现在与未来》,《经济学(季刊)》第4期,第1489~1502页。
[3]江艇,2022,《因果推断经验研究中的中介效应与调节效应》,《中国工业经济》第5期,第100~120页。
[4]刘喜和,李娇和吴欣洋,2024,《金融科技平台公司发展对商业银行零售信贷的影响研究》,《金融监管研究》第11期,第63~79页。
[5]卢垚、李帅和战明华,2024,《数字金融、双环节联动与货币政策利率渠道传导》,《国际金融研究》第4期,第37~48页。
[6]卢垚和战明华,2023,《数字金融、企业异质与货币政策利率渠道的结构效应》,《南开经济研究》第5期,第19~37页。
[7]路晓蒙、王一冰和吴卫星,2023,《传统投资顾问和智能投资顾问:替代还是互补?》,《管理世界》第10期,第74~98页。
[8]路晓蒙、张勇和潘黎,2020,《持股周期与股票盈利:来自中国A股市场的证据》,《统计研究》第4期,第32~45页。
[9]易纲,2021,《中国的利率体系与利率市场化改革》,《金融研究》第9期,第1~11页。
[10]易纲,2023,《货币政策的自主性、有效性与经济金融稳定》,《经济研究》第6期,第19~29页。
[11]尹振涛、罗朝阳和汪勇,2023,《数字化背景下中国货币政策利率传导效率研究——来自数字消费信贷市场的微观证据》,《管理世界》第4期,第33~46页。
[12]尹志超、宋全云和吴雨等,2015,《金融知识、创业决策和创业动机》,《管理世界》第1期,第87~98页。
[13]战明华、李帅和吴周恒,2023,《数字金融、严重负向冲击与非常规货币政策》,《中国工业经济》第11期,第24~42页。
[14]战明华、汤颜菲和李帅,2020,《数字金融发展、渠道效应差异和货币政策传导效果》,《经济研究》第6期,第22~38页。
[15]Aiyagari, S. R., 1994, “Uninsured Idiosyncratic Risk and Aggregate Saving”, The Quarterly Journal of Economics, 109(3), pp.659~684.
[16]Auclert, A., 2019, “Monetary Policy and the Redistribution Channel”, American Economic Review, 109(6), pp. 2333~2367.
[17]Barber, B. M. and T. Odean, 2008, “All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors”, The Review of Financial Studies, 21(2), pp.785~818.
[18]Bartlett, R., A. Morse, R. Stanton and N. Wallace, 2022, “Consumer-lending Discrimination in the FinTech Era”, Journal of Financial Economics, 143(1), pp. 30~56.
[19]Buchak, G., J. Hu and S. J. Wei, 2021, “FinTech as a Financial Liberator”, NBER Working Paper, No. 29448.
[20]Canzoneri, M. B., R. E. Cumby and B. T. Diba, 2007, “Euler Equations and Money Market Interest Rates: A Challenge for Monetary Policy Models”, Journal of Monetary Economics, 54(7), pp.1863~1881.
[21]Chen, K. and T. Zha, 2018, “Macroeconomic Effects of China's Financial Policies”, NBER Working Paper, No.25222.
[22]Cloyne, J., C. Ferreira and P. Surico, 2020, “Monetary Policy when Households Have Debt: New Evidence on the Transmission Mechanism”, The Review of Economic Studies, 87(1), pp.102~129.
[23]Di Maggio, M., A. Kermani, B. J. Keys, T. Piskorski, R. Ramcharan, A. Seru and V. Yao, 2017, “Interest Rate Pass-Through: Mortgage Rates, Household Consumption, and Voluntary Deleveraging”, American Economic Review, 107(11), pp.3550~3588.
[24]Drechsler, I., A. Savov and P. Schnabl, 2017, “The Deposits Channel of Monetary Policy”, The Quarterly Journal of Economics, 132(4), pp.1819~1876.
[25]Flodén, M., M. Kilström, J. Sigurdsson and R. Vestman, 2021, “Household Debt and Monetary Policy: Revealing the Cash-Flow Channel”, The Economic Journal, 131(636), pp.1742~1771.
[26]Hasan, I., B. Kwak and X. Li, 2024, “Financial Technologies and the Effectiveness of Monetary Policy Transmission”, European Economic Review, 161, p.104650.
[27]Hasan, I., X. Li and T. Takalo, 2025, “Technological Innovation and the Bank Lending Channel of Monetary Policy Transmission”, SSRN Working Paper, No.3928813.
[28]Holm, M. B., P. Paul and A. Tischbirek, 2021, “The Transmission of Monetary Policy under the Microscope”, Journal of Political Economy, 129(10), pp.2861~2904.
[29]Huang, Y. P., X. Li, H. Qiu and C. Yu, 2023, “BigTech credit and monetary policy transmission: Micro-level evidence from China”, BIS Working Papers, No.1084.
[30]Kaplan, G., B. Moll and G. L. Violante, 2018, “Monetary Policy According to HANK”, American Economic Review, 108(3), pp.697~743.
[31]Koivu, T., 2012, “Monetary Policy, Asset Prices and Consumption in China”, Economic Systems, 36(2), pp.307~325.
[32]Lu, D., H. Tang and C. Zhang, 2023, “China's Monetary Policy Surprises and Corporate Real Investment”, China Economic Review, 77, 101893.
[33]McKay, A. and J. F. Wieland, 2021, “Lumpy Durable Consumption Demand and the Limited Ammunition of Monetary Policy”, Econometrica, 89(6), pp.2717~2749.
[34]Sterk, V. and S. Tenreyro, 2018, “The Transmission of Monetary Policy through Redistributions and Durable Purchases”, Journal of Monetary Economics, 99, pp.124~137.
[35]Stock, J. and M. Yogo, 2005, “Testing for Weak Instruments in Linear IV Regression”, in Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg, Eds. by D. Andrew and J. Stock, pp. 80~108.
[36]Thaler, R. H. and C. R. Sunstein, 2008, Nudge: Improving Decisions About Health, Wealth, and Happiness, Yale University Press, New Haven, CT.
[37]Weber, M., B. Candia, H. Afrouzi,T. Ropele, R. Lluberas, S. Frache, B. Meyer, S. Kumar, Y. Gorodnichenko, D. Georgarakos, O. Coibion, G. Kenny and J. Ponce, 2025, “Tell Me Something I Don't Already Know: Learning in Low-and High-Inflation Settings”, Econometrica, 93(1), pp.229~264.
[38]Wong, A., 2021, “Refinancing and The Transmission of Monetary Policy to Consumption”, Princeton Economics Working Papers, No.2021-57.
[39]Zhang, Y. and G. H. Wan, 2002, “Household Consumption and Monetary Policy in China”, China Economic Review, 13(1), pp.27~52.
[1] 李家山, 易行健, 何启志, 周利. 股票市场财富效应与居民消费意愿——来自中国家庭微观调查数据的经验证据[J]. 金融研究, 2025, 538(4): 170-188.
[2] 高崧耀, 王佳欣, 崔百胜. 房地产市场调整、银行资产负债表与货币政策应对[J]. 金融研究, 2025, 537(3): 40-57.
[3] 张博, 张晓帆, 蔡子阳. 金融科技、金融普惠与非法集资风险[J]. 金融研究, 2025, 535(1): 39-57.
[4] 范志勇, 安戈洋, 章永辉. 银行间市场短端利率波动与货币政策传导效率——基于利率互换市场高频识别与局部投影方法[J]. 金融研究, 2024, 531(9): 1-19.
[5] 马理, 张人中, 马威. 绿色结构性货币政策的实施效果与传导机理研究[J]. 金融研究, 2024, 529(7): 40-58.
[6] 巩冰, 张蓓, 杨斯尧, 徐照宜. “双碳”目标下碳减排支持工具对商业银行市场价值的影响研究[J]. 金融研究, 2024, 529(7): 77-95.
[7] 董青马, 张皓越, 马剑文, 尚玉皇. 央行沟通与资产价格——识别“潜在”未预期货币政策信息[J]. 金融研究, 2024, 528(6): 40-59.
[8] 林建浩, 陈良源, 黄颖平. 识别货币政策操作的多重冲击及其经济效应[J]. 金融研究, 2024, 527(5): 20-38.
[9] 钟超杰, 赵淳, 高峰, 王天宇, 王倩. 金融科技改善你的基金投资了吗?——基于基金销售渠道的分析[J]. 金融研究, 2024, 527(5): 114-131.
[10] 陈国进, 丁赛杰, 赵向琴. 绿色结构性货币政策、政策预期与经济绿色转型[J]. 金融研究, 2024, 526(4): 1-19.
[11] 谭小芬, 李子若, 赵茜, 卢冰. 货币政策分化与跨境银行资本流动的部门间配置——兼论官方部门的“缓冲器”作用[J]. 金融研究, 2024, 534(12): 1-19.
[12] 闫昱, 童彦, 哈斯木其尔, 金桩. 利率变动、交易行为与金融稳定——一个融合异质信念的异质代理人连续时间DSGE模型[J]. 金融研究, 2024, 534(12): 20-39.
[13] 张成思, 徐硕, 何启志. 国债收益率曲线仿射模型与期限传递机制研究[J]. 金融研究, 2024, 534(12): 59-77.
[14] 王辉, 朱家雲, 胡诣聪. 央行预期引导可以降低银行系统性金融风险吗?——基于市场解读偏离的视角[J]. 金融研究, 2023, 519(9): 1-19.
[15] 梅冬州, 宋佳馨, 马振宇. 美联储货币政策紧缩的跨国异质性影响研究[J]. 金融研究, 2023, 517(7): 1-20.
[1] 曾利飞, 辛子辰, 许志, 曹伟. 健全社会保障体系与居民生育率——基于长期护理保险视角[J]. 金融研究, 2025, 545(11): 58 -76 .
[2] 柳建华, 陈果, 朱效禹, 廖天龙. 新《环保法》实施与   重污染企业的资本结构调整[J]. 金融研究, 2025, 545(11): 77 -95 .
[3] 何青, 庄朋涛, 夏琴, 琚望静. ESG新闻舆情如何影响企业   非效率投资行为——基于信息和情绪双重视角[J]. 金融研究, 2025, 545(11): 96 -114 .
[4] 郑登津, 史嘉铭, 陈菁. 政府财会监督与分析师预测质量——基于财政部会计信息质量随机检查的证据[J]. 金融研究, 2025, 545(11): 115 -132 .
[5] 马光荣, 尹浩儒, 赵耀红. 股利税如何影响企业投资?——基于差别化股利税政策的研究[J]. 金融研究, 2025, 545(11): 133 -151 .
[6] 熊熊, 陈若鑫, 孟永强, 高雅, 林兟. “以行定类”:基于持股偏好的投资者分类[J]. 金融研究, 2025, 545(11): 170 -188 .
[7] 张梦婷, 司登奎, 石岿然, 王桂虎. 收入不稳定冲击的经济波动效应与政策协同调控[J]. 金融研究, 2025, 543(9): 1 -19 .
[8] 尚玉皇, 刘华, 申峰. 预期的博弈:央行沟通与国债收益率曲线[J]. 金融研究, 2025, 543(9): 20 -38 .
[9] 纪敏, 邱丽萍, 杨刚, 刘俊杰, 高洁. 通胀预期如何影响债券信用利差?[J]. 金融研究, 2025, 544(10): 1 -20 .
[10] 徐丽鹤, 周利, 张勋. 中国数字金融发展能否实现普惠性?[J]. 金融研究, 2025, 545(11): 19 -38 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1