Please wait a minute...
金融研究  2025, Vol. 542 Issue (8): 189-206    
  本期目录 | 过刊浏览 | 高级检索 |
我国量化私募基金的业绩和系统性尾部风险
廖涌屹, 向昊天
北京大学光华管理学院,北京 100871
Performance and Systematic Tail Risks of Chinese Quantitative Hedge Funds
LIAO Yongyi, XIANG Haotian
Guanghua School of Management, Peking University
下载:  PDF (831KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文利用2015年7月至2024年6月6000余只股票策略量化私募的业绩数据,对我国量化私募的业绩和风险进行了系统性分析。研究发现:(1)基金整体存在对系统性尾部风险的正向敞口;(2)高系统性尾部风险水平的基金具有较高的收益,这可能是基金进行主动风险暴露的背后动因,但也同时使其在风险实现时出现更大幅度的亏损;(3)相比于主观私募,量化私募有更高的系统性尾部风险敞口,这可能受到客户需求和基金经理能力的影响;(4)在风险溢价之外,我国量化私募整体不存在创造超额收益的能力。本文揭示了量化私募的中国特征,为科学监管量化交易、推进机构能力建设、防范化解金融风险提供了政策启示。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
廖涌屹
向昊天
关键词:  私募基金  量化交易  系统性尾部风险  业绩  因子模型    
Summary:  With the steady advancement of China's multi-tiered capital market, quantitative hedge funds driven by algorithmic trading have experienced rapid growth over the past decade, becoming a critical component in fostering robust financial institutions and effective financial regulation. Leveraging the wealth management capabilities of quantitative hedge funds while enhancing their risk resilience, all while cultivating internationally competitive financial institutions and safeguarding against systemic risks, has emerged as an important issue for regulators.
However, there remains a lack of systematic empirical analysis regarding the actual risk exposures and performance of quantitative hedge funds. Compared to qualitative hedge funds and mutual funds, quantitative hedge funds possess stronger technical capabilities, employing algorithmic trading, high-frequency strategies, complex short-selling techniques, and high-leverage designs. These characteristics may allow them to target non-traditional risks more effectively. Consequently, their wealth management approach may differ significantly from that of traditional institutions. Due to the lack of comprehensive empirical studies, there is still considerable divergence in how regulators, market participants, and other stakeholders perceive quantitative hedge funds, often sparking heated discussions on related topics.
This study conducts the first empirical analysis of the risk and performance of Chinese quantitative hedge funds, shedding light on their distinct characteristics within the Chinese context. Specifically, we utilize the widely adopted Suntime database, which offers robust coverage of Chinese quantitative hedge funds, enabling a systematic investigation of their risk and performance. Based on monthly data from 6,784 stock-strategy quantitative hedge funds between July 2015 and June 2024, we first examine their systematic tail risk. Our findings reveal several key insights. First, the quantitative hedge fund industry as a whole exhibits positive exposure to the systematic tail risk factor. Second, this systematic tail risk factor carries a risk premium that cannot be fully explained by the Carhart four-factor or Fama-French six-factor models. After accounting for exposure to this factor, the average alpha of funds decreases further. Additionally, through Fama-MacBeth regressions, we find that funds with higher systematic tail risk achieve higher excess returns. These results consistently indicate that Chinese quantitative hedge funds are indeed exposed to systematic tail risk, with the associated risk premium potentially serving as a key driver of its performance. Further analysis confirms that funds with higher systematic tail risk suffer more severe losses during market tail risk events, warranting heightened regulatory attention due to their potential adverse impact on the market. Moreover, we find that quantitative hedge funds exhibit greater exposure to systematic tail risk compared to qualitative hedge funds, and their risk levels are correlated with the characteristics of fund managers and clients. These results underscore the importance of strengthening regulation of quantitative hedge funds to mitigate major financial risks.Beyond the risk premiums derived from risk exposures, we also explore funds' ability to generate alpha. Our analysis reveals that the Chinese quantitative hedge fund industry, on average, does not produce significantly positive excess returns or alpha.
This study makes three key academic contributions. First, it significantly enriches the literature on securities investment funds by providing the analysis of risk exposures and performance in Chinese quantitative hedge funds, revealing their unique characteristics in China. This addresses gaps in understanding their wealth management and risk resilience capabilities. Second, it advances the literature on systematic tail risk by extending its study to asset management, demonstrating that quantitative hedge funds are affected by systematic tail risk and highlighting its spillover effects on financial institutions from a new perspective. Third, it contributes to the literature on quantitative trading. While academic research on quantitative trading is well-developed abroad, it has only recently gained traction in China, where there is still considerable room for improvement in the corresponding market infrastructure. By examining quantitative hedge funds, a key player in China's quantitative trading landscape, this study elucidates their performance and underlying risks, providing policy insights for better managing and guiding the development of quantitative trading in the future.
Keywords:  Private Fund    Quantitative Trading    Systematic Tail Risks    Performance    Factor Model
JEL分类号:  G23   G12  
基金资助: * 本文感谢国家自然科学基金(72073004)和国家社会科学基金(23AZD082)资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  向昊天,金融学博士,副教授,北京大学光华管理学院,E-mail:xiang@gsm. pku.edu.cn.   
作者简介:  廖涌屹,金融学硕士,北京大学光华管理学院,E-mail:1900015804@pku.edu.cn.
引用本文:    
廖涌屹, 向昊天. 我国量化私募基金的业绩和系统性尾部风险[J]. 金融研究, 2025, 542(8): 189-206.
LIAO Yongyi, XIANG Haotian. Performance and Systematic Tail Risks of Chinese Quantitative Hedge Funds. Journal of Financial Research, 2025, 542(8): 189-206.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V542/I8/189
[1] 陈海强和倪博,2024,《T+0量化交易与转融券市场化费率居高不下之谜——从交易制度套利论协同改革的必要性》,《管理世界》第6期,第60~76页。
[2] 陈建青、王擎和许韶辉,2015,《金融行业间的系统性金融风险溢出效应研究》,《数量经济技术经济研究》第9期,第89~100页。
[3] 方意,2016,《系统性风险的传染渠道与度量研究——兼论宏观审慎政策实施》,《管理世界》第8期,第32~57页。
[4] 郭国峰和郑召锋,2013,《阳光私募择时能力的实证检验——基于成立时机选择的视角》,《数量经济技术经济研究》第6期,第106~118页。
[5] 郭晔和赵静,2017,《存款保险制度、银行异质性与银行个体风险》,《经济研究》第12期,第134~148页。
[6] 姜富伟、宁炜和薛浩,2022,《机构投资与金融稳定——基于A股ETF套利交易的视角》,《管理世界》第4期,第29~49页。
[7] 李志冰和刘晓宇,2019,《基金业绩归因与投资者行为》,《金融研究》第2期,第188~206页。
[8] 刘莎莎、刘玉珍和唐涯,2013,《信息优势、风险调整与基金业绩》,《管理世界》第8期,第67~76页。
[9] 刘圣尧、李怡宗和杨云红,2016,《中国股市的崩盘系统性风险与投资者行为偏好》,《金融研究》第2期,第55~70页。
[10] 陆艺升、徐秋华和罗荣华,2022,《尾部风险承担与基金网络》,《经济学(季刊)》第3期,第911~932页。
[11] 罗荣华、兰伟和杨云红,2011,《基金的主动性管理提升了业绩吗?》,《金融研究》第10期,第127~139页。
[12] 李政、梁琪和方意,2019,《中国金融部门间系统性风险溢出的监测预警研究——基于下行和上行ΔCoES指标的实现与优化》,《金融研究》第2期,第40~58页。
[13] 田正磊、罗荣华和刘阳,2019,《信息传递、集体踩踏与系统性尾部风险》,《经济学(季刊)》第3期,第897~918页。
[14] 肖欣荣和田存志,2011,《私募基金的管理规模与最优激励契约》,《经济研究》第3期,第119~130页。
[15] 杨子晖、陈雨恬和张平淼,2020,《重大突发公共事件下的宏观经济冲击、金融风险传导与治理应对》,《管理世界》第5期,第13~35页。
[16] 杨子晖和王姝黛,2021,《突发公共卫生事件下的全球股市系统性金融风险传染——来自新冠疫情的证据》,《经济研究》第8期,第22~38页。
[17] 余音、姚彤、张峥和江嘉骏,2018,《期末溢价与基金家族策略——来自中国公募基金市场的证据》,《金融研究》第5期,第154~171页。
[18] 朱菲菲、吴偎立和杨云红,2023,《ETF、股票流动性与股价崩盘风险》,《金融研究》第6期,第169~186页。
[19] 祝小全、曹泉伟和陈卓,2022,《“能力”或“运气”:中国私募证券投资基金的多维择时与价值》,《经济学(季刊)》第3期,第843~866页。
[20] Acharya, V. V., L. H. Pedersen, T. Philippon and M. Richardson, 2017, “Measuring Systemic Risk”, Review of Financial Studies, 30(1), pp.2~47.
[21] Ackermann, C., R. McEnally and D. Ravenscraft, 1999, “The Performance of Hedge Funds: Risk, Return, and Incentives”, Journal of Finance, 54(3), pp.833~874.
[22] Adrian, T. and M. K. Brunnermeier, 2016, “CoVaR”, American Economic Review, 106(7), pp.1705~1741.
[23] Agarwal, V., T. C. Green and H. Ren, 2018, “Alpha or Beta in the Eye of the Beholder: What Drives Hedge Fund Flows?”, Journal of Financial Economics, 127(3), pp.417~434.
[24] Agarwal, V., K. A. Mullally and N. Y. Naik, 2015, “The Economics and Finance of Hedge Funds: A Review of the Academic Literature”, Foundations and Trends in Finance, 10(1), pp.1~111.
[25] Agarwal, V., S. Ruenzi and F. Weigert, 2017, “Tail Risk in Hedge Funds: A Unique View from Portfolio Holdings”, Journal of Financial Economics, 125(3), pp.610~636.
[26] Ardia, D., L. Barras, P. Gagliardini and O. Scaillet, 2024, “Is It Alpha or Beta? Decomposing Hedge Fund Returns When Models Are Misspecified”, Journal of Financial Economics, 154, pp.103805.
[27] Baldauf, M. and J. Mollner, 2020, “High-Frequency Trading and Market Performance”, Journal of Finance, 75(3), pp.1495~1526.
[28] Brogaard, J., T. Hendershott and R. Riordan, 2017, “High Frequency Trading and the 2008 Short-Sale Ban”, Journal of Financial Economics, 124(1), pp.22~42.
[29] Bali, T. G., S. J. Brown and M. O. Caglayan, 2014, “Macroeconomic Risk and Hedge Fund Returns”, Journal of Financial Economics, 114(1), pp.1~19.
[30] Brownlees, C. and R. F. Engle, 2017, “SRISK: A Conditional Capital Shortfall Measure of Systemic Risk”, Review of Financial Studies, 30(1), pp.48~79.
[31] Brunnermeier, M. K. and S. Nagel, 2004, “Hedge Funds and the Technology Bubble”, Journal of Finance, 59(5), pp.2013~2040.
[32] Budish, E., P. Cramton and J. Shim, 2015, “The High-Frequency Trading Arms Race: Frequent Batch Auctions as a Market Design Response”, Quarterly Journal of Economics, 130(4), pp.1547~1621.
[33] Carhart, M. M., 1997, “On Persistence in Mutual Fund Performance”, Journal of Finance, 52(1), pp.57~82.
[34] Chincarini, L., 2014, “The Impact of Quantitative Methods on Hedge Fund Performance”, European Financial Management, 20(5), pp.857~890.
[35] Cochrane, J. H., 2011, “Presidential Address: Discount Rates”, Journal of Finance, 66(4), pp.1047~1108.
[36] Daniel, K. and T. J. Moskowitz, 2016, “Momentum Crashes”, Journal of Financial Economics, 122(2), pp.221~247.
[37] Fama, E. F. and K. R. French, 1993, “Common Risk Factors in the Returns on Stocks and Bonds”, Journal of Financial Economics, 33(1), pp.3~56.
[38] Fama, E. F. and K. R. French, 2010, “Luck Versus Skill in the Cross-Section of Mutual Fund Returns”, Journal of Finance, 65(5), pp.1915~1947.
[39] Fama, E. F. and K. R. French, 2015, “A Five-Factor Asset Pricing Model”, Journal of Financial Economics, 116(1), pp.1~22.
[40] Fama, E. F. and K. R. French, 2018, “Choosing Factors”, Journal of Financial Economics, 128(2), pp.234~252.
[41] Fama, E. F. and J. D. MacBeth, 1973, “Risk, Return, and Equilibrium: Empirical Tests”, Journal of Political Economy, 81(3), pp.607~636.
[42] Frazzini, A., D. Kabiller and L. H. Pedersen, 2018, “Buffett's Alpha”, Financial Analysts Journal, 74(4), pp.35~55.
[43] Goldstein, I., A. Kopytov, L. Shen and H. Xiang, 2024, “Bank Heterogeneity and Financial Stability”, Journal of Financial Economics, 162, pp.103934.
[44] Fung, W. and D. A. Hsieh, 2004, “Hedge Fund Benchmarks: A Risk-Based Approach”, Financial Analysts Journal, 60(5), pp.65~80.
[45] Brown, G. W., P. Howard and C. T. Lundblad, 2022, “Crowded Trades and Tail Risk”, Review of Financial Studies, 35(7), pp.3231~3271.
[46] Harvey, C. R., S. Rattray, A. Sinclair and O. Van Hemert, 2017, “Comparing Discretionary and Systematic Hedge Fund Performance”, Journal of Portfolio Management, Summer, pp.55~69.
[47] Ibbotson, R. G., P. Chen and K. X. Zhu, 2011, “The ABCs of Hedge Funds: Alphas, Betas, and Costs”, Financial Analysts Journal, 67(1), pp.15~25.
[48] Linnainmaa, J. T., 2013, “Reverse Survivorship Bias”, Journal of Finance, 68(3), pp.789~813.
[49] Liu, J., R. F. Stambaugh and Y. Yuan, 2019, “Size and Value in China”, Journal of Financial Economics, 134(1), pp.48~69.
[50] Newey, W. K. and K. D. West, 1987, “A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix”, Econometrica, 55(3), pp.703~708.
[51] Pagnotta, E. S. and T. Philippon, 2018, “Competing on Speed”, Econometrica, 86(3), pp.1067~1115.
[52] Pastor, L., R. F. Stambaugh and L. A. Taylor, 2015, “Scale and Skill in Active Management”, Journal of Financial Economics, 116(1), pp.23~45.
[53] Rietz, T. A., 1988, “The Equity Risk Premium: A Solution”, Journal of Monetary Economics, 22(1), pp.117~131.
[54] Sadka, R., 2010, “Liquidity Risk and the Cross-Section of Hedge-Fund Returns”, Journal of Financial Economics, 98(1), pp.54~71.
[55] Stulz, R. M., 2007, “Hedge Funds: Past, Present, and Future”, Journal of Economic Perspectives, 21(2), pp.175~194.
[56] Van Oordt, M. R. and C. Zhou, 2016, “Systematic Tail Risk”, Journal of Financial and Quantitative Analysis, 51(2), pp.685~705.
[1] 叶帅, 张劲帆, 郑凯轩. 中国新基金过度发行之谜和投资者保护[J]. 金融研究, 2024, 531(9): 171-188.
[2] 徐亚飞, 孟庆玺. 并购业绩承诺完成质量何以提升?——来自媒体监督的证据[J]. 金融研究, 2024, 528(6): 188-206.
[3] 戴亦一, 纪翔阁, 宁博, 潘越. 企业业绩爆雷的溢出效应——来自地区企业税负的证据[J]. 金融研究, 2023, 512(2): 134-151.
[4] 冯科, 邢晓旭, 何理. 业绩对赌协议对并购溢价和市场反应的影响[J]. 金融研究, 2023, 511(1): 188-206.
[5] 李斌, 雷印如. 中国公募基金挖掘了股票市场异象吗?[J]. 金融研究, 2022, 507(9): 188-206.
[6] 邹静娴, 申广军, 刘超. 减税政策对小微企业债务期限结构的影响[J]. 金融研究, 2022, 504(6): 74-93.
[7] 卓志, 张晓涵. 消费者投诉冲击与保险公司业绩[J]. 金融研究, 2022, 502(4): 97-113.
[8] 张琳琳, 沈红波, 范剑青. 证券投资基金规模适度性研究——基于中国市场的证据[J]. 金融研究, 2022, 501(3): 189-206.
[9] 李少育, 张滕, 尚玉皇, 周宇. 市场摩擦对特质风险溢价的影响效应——基于A股主板市场的实证分析[J]. 金融研究, 2021, 494(8): 190-206.
[10] 王霞, 司诺, 宋涛. 中国季度GDP的即时预测与混频分析[J]. 金融研究, 2021, 494(8): 22-41.
[11] 徐灿宇, 李烜博, 梁上坤. 董事会断裂带与企业薪酬差距[J]. 金融研究, 2021, 493(7): 172-189.
[12] 寇宗来, 毕睿罡, 陈晓波. 基金业绩如何影响风格漂移和经理离职?——理论与经验分析[J]. 金融研究, 2020, 483(9): 172-189.
[13] 窦超, 翟进步. 业绩承诺背后的财富转移效应研究[J]. 金融研究, 2020, 486(12): 189-206.
[14] 王丹, 孙鲲鹏, 高皓. 社交媒体上“用嘴投票”对管理层自愿性业绩预告的影响[J]. 金融研究, 2020, 485(11): 188-206.
[15] 李志冰, 刘晓宇. 基金业绩归因与投资者行为[J]. 金融研究, 2019, 464(2): 188-205.
[1] 申广军, 欧阳伊玲, 李力行. 技能结构的地区差异:金融发展视角[J]. 金融研究, 2017, 445(7): 45 -61 .
[2] 尹力博, 廖辉毅. 中国A股市场存在品质溢价吗?[J]. 金融研究, 2019, 472(10): 170 -187 .
[3] 叶永卫, 李增福. 续贷限制与企业技术创新[J]. 金融研究, 2020, 485(11): 151 -169 .
[4] 冯根福, 刘虹, 冯照桢, 温军. 股票流动性会促进我国企业技术创新吗?[J]. 金融研究, 2017, 441(3): 192 -206 .
[5] 陈新春, 刘阳, 罗荣华. 机构投资者信息共享会引来黑天鹅吗? ——基金信息网络与极端市场风险[J]. 金融研究, 2017, 445(7): 140 -155 .
[6] 冯玉林, 汤珂, 康文津. 中国大宗商品期货市场定价机制研究[J]. 金融研究, 2022, 510(12): 149 -167 .
[7] 施炳展, 张雅睿. 人民币双边事实汇率制度与中国出口增长[J]. 金融研究, 2016, 434(8): 1 -7 .
[8] 黄卓, 陶云清, 王帅. 社会信用环境改善降低了企业违规吗?——来自“中国社会信用体系建设”的证据[J]. 金融研究, 2023, 515(5): 96 -114 .
[9] 杨佳, 陆瑶, 葛茜予. 实体企业参控股金融机构的风险防范与化解——基于外部治理的视角[J]. 金融研究, 2025, 542(8): 37 -55 .
[10] 孙浦阳, 杨易擎, 蒋殿春. 批发业外资开放、供应链整合与消费福利——基于微观视角的理论与经验分析[J]. 金融研究, 2024, 532(10): 113 -131 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1