Please wait a minute...
金融研究  2025, Vol. 541 Issue (7): 39-56    
  本期目录 | 过刊浏览 | 高级检索 |
市场化征信机构与中小企业融资约束——来自世界银行企业调查数据的微观证据
熊鹏翀, 纪洋, 朱孟楠
厦门大学经济学院,福建厦门 361005;
中山大学商学院,广东深圳 518107
Market-oriented Credit Reporting Bureau and SMEs Financing Constraints: Micro Evidence from the World Bank Enterprise Surveys Data
XIONG Pengchong, JI Yang, ZHU Mengnan
School of Economics,Xiamen University;
Business School,Sun Yat-sen University
下载:  PDF (1087KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,我国加速建设市场化的征信机构,这也是数据要素市场化的重要内容。本文利用世界银行对全球约7万家企业的最新调查数据,手动匹配98个经济体的征信机构信息,实证分析征信机构对中小企业融资约束的影响,为我国提供可参照的国际经验。研究发现,设立市场化征信机构之后,大企业所面临的融资约束没有显著变化,而中小企业的融资约束显著降低。机制分析发现,市场化征信机构促进了银行对企业信息的获取和积累,降低银行对贷款抵押物的要求,且以上机制仅显著作用于中小企业。本文结论对推进数据要素市场化、改善中小企业融资现状具有一定启示意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
熊鹏翀
纪洋
朱孟楠
关键词:  征信机构  数据要素市场化  中小企业  融资约束    
Summary:  Information asymmetry and insufficient data remain persistent barriers limiting access to external finance for small and medium-sized enterprises (SMEs) worldwide. Unlike large firms, many SMEs operate informally, avoiding the costs associated with formal registration, such as administrative procedures, time, taxes, and regulatory inspections. However, the absence of formal business records prevents SMEs from building credible credit histories, which are essential for securing bank loans. Even when some data exist, financial institutions often face high costs and technical difficulties in collecting and processing the information required to assess SMEs' creditworthiness. Moreover, SMEs frequently lack sufficient physical collateral, further exacerbating their financing constraints.
Against this backdrop, market-oriented credit reporting bureaus, as key components of the data factor market, theoretically hold significant potential in mitigating the information asymmetry faced by SMEs. Unlike public credit registries, which primarily focus on maintaining financial stability and have relatively limited data collection scopes, market-oriented bureaus operate under market-based mechanisms and leverage technological innovations to expand the breadth and depth of information acquisition. This facilitates the circulation and utilization of data and information, enabling the development of richer and more multidimensional credit profiles for individuals and enterprises. Such capabilities not only help alleviate the information asymmetry encountered by financial institutions when granting credit to SMEs but also offer new possibilities for reducing the reliance of lending decisions on collateral.
Motivated by these considerations, this paper employs the latest World Bank Enterprise Surveys data covering over 70000 enterprises globally and manually matches data on credit reporting institutions across 98 economies to empirically investigate the impact of market-oriented credit reporting bureaus on enterprise financing constraints, providing internationally comparable insight for China's current reforms. Empirical results show that the establishment of market-oriented credit bureaus significantly reduces financing constraints for SMEs, while having no significant effect on large firms. In contrast, public credit registries do not exhibit significant effects on alleviating financing constraints for either SMEs or large enterprises. These findings remain robust across alternative variable definitions, placebo tests, and after addressing potential endogeneity concerns.
Further analysis reveals the mechanisms through which market-oriented credit reporting bureaus affect SME financing. These bureaus promote both the collection and accumulation of enterprise-related information, not only expanding the availability of data itself but also encouraging SMEs to register formally and extend their duration of formal operations. Moreover, by integrating multidimensional and diverse data sources, market-oriented credit bureaus are better able to reach underserved and low-tier segments of the market, building more comprehensive credit profiles for SMEs and helping reduce banks' dependence on collateral in credit decisions. These mechanisms collectively explain why market-oriented credit reporting bureaus play a unique role in easing financing constraints for SMEs, whereas public credit registries have been less successful in achieving similar outcomes.
This paper contributes new empirical evidence regarding the role of market-oriented credit reporting bureaus in mitigating SMEs financing constraints. Compared to the existing literature, it further explores the specific channels through which market-oriented credit reporting bureaus alleviate challenges unique to SMEs. While prior studies have established that credit reporting systems can reduce information asymmetry and lower firms' financing costs, few studies have directly examined how market-oriented bureaus help address issues such as insufficient collateral or limited credit histories that particularly affect SMEs. This paper investigates these specific pathways, enriching our understanding of how market-oriented credit reporting bureaus influence SME financing outcomes.
The findings also carry important policy implications. First, the results provide empirical support for the positive externalities associated with the marketization of data as a production factor. The study finds that globally, government-led public credit registries have not significantly reduced firms' financing constraints, nor does market-oriented credit reporting bureaus increase the financing burden on firms; instead, it is precisely the market-oriented credit reporting bureaus that effectively mitigate these constraints. Second, the paper's analysis of SMEs-specific channels offers practical policy recommendations for addressing SMEs financing difficulties. The analysis in this paper indicates that the development of market-oriented credit reporting bureaus can help reduce banks' collateral requirements for SMEs. Accordingly, one feasible approach to promoting SMEs financing within the data factor market is to enhance the cooperation between these credit reporting bureaus and banks. By leveraging the strengths of market-oriented credit bureaus in credit product development, joint efforts can be made to introduce credit loan products based on large-scale credit data.
Keywords:  Credit Reporting Bureau    Marketization of Data Factor    SMEs    Financial Constraints
JEL分类号:  E02   G23   M21  
基金资助: * 作者感谢深圳市哲学社会科学规划课题(SZ2024B018)、国家自然科学基金面上项目(72073113)和中山大学中央高校基本科研业务费专项资金(交叉学科培育项目24WKJC08)的支持。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  纪 洋,经济学博士,副教授,中山大学商学院,E-mail:jiyang3@mail.sysu.edu.cn.   
作者简介:  熊鹏翀,博士研究生,厦门大学经济学院,香港城市大学商学院,E-mail:pengchong.xiong@my.cityu.edu.hk.
朱孟楠,经济学(金融学)博士,教授,厦门大学经济学院,E-mail:zmnan@xmu.edu.cn.
引用本文:    
熊鹏翀, 纪洋, 朱孟楠. 市场化征信机构与中小企业融资约束——来自世界银行企业调查数据的微观证据[J]. 金融研究, 2025, 541(7): 39-56.
XIONG Pengchong, JI Yang, ZHU Mengnan. Market-oriented Credit Reporting Bureau and SMEs Financing Constraints: Micro Evidence from the World Bank Enterprise Surveys Data. Journal of Financial Research, 2025, 541(7): 39-56.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V541/I7/39
[1] 曹光宇、刘畅和周黎安,2022,《大数据征信与平台流量》,《世界经济》第9期,第130~151页。
[2] 曹雨阳、孔东民和陶云清,2022,《中国社会信用体系改革试点效果评估——基于企业社会责任的视角》,《财经研究》第2期,第93~108页。
[3] 戴亦一、张鹏东和潘越,2019,《老赖越多,贷款越难?——来自地区诚信水平与上市公司银行借款的证据》,《金融研究》第8期,第77~95页。
[4] 洪永淼、张明和刘颖,2022,《推动跨境数据安全有序流动 引领数字经济全球化发展》,《中国科学院院刊》第10期,第1418~1425页。
[5] 江艇,2022,《因果推断经验研究中的中介效应与调节效应》,《中国工业经济》第5期,第100~120页。
[6] 李俊青、韩其恒和寇海洁,2022,《政府、社会信任与经济增长》,《经济研究》第6期,第26~44页。
[7] 林毅夫和李永军,2001,《中小金融机构发展与中小企业融资》,《经济研究》第1期,第10~18+53~93页。
[8] 钱雪松、杜立和马文涛,2015,《中国货币政策利率传导有效性研究:中介效应和体制内外差异》,《管理世界》第11期,第11~28+187页。
[9] 宋林霖和何成祥,2018,《优化营商环境视阈下放管服改革的逻辑与推进路径——基于世界银行营商环境指标体系的分析》,《中国行政管理》第4期,第67~72页。
[10] 谭语嫣、纪洋和黄益平,2017,《利率市场化改革对经济效率的影响》,《世界经济》第4期,第3~28页。
[11] 陶云清和张金林,2023,《社会信用、融资约束与企业金融化——来自“中国社会信用体系建设”的证据》,《上海对外经贸大学学报》第2期,第89~105页。
[12] 巫岑、饶品贵和岳衡,2022,《注册制的溢出效应:基于股价同步性的研究》,《管理世界》第12期,第177~202页。
[13] 谢绚丽、沈艳、张皓星和郭峰,2018,《数字金融能促进创业吗?——来自中国的证据》,《经济学(季刊)》第4期,第1557~1580页。
[14] 许宪春、胡亚茹和张美慧,2022,《数字经济增长测算与数据生产要素统计核算问题研究》,《中国科学院院刊》第10期,第1410~1417页。
[15] 叶征、田昆和黄丹阳,2020,《市场化征信助力小微发展》,《中国金融》第4期,第77~78页。
[16] 张牧扬、潘妍和余泳泽,2022,《社会信用、刚兑信仰与地方政府隐性债务》,《金融研究》第10期,第1~19页。
[17] 张三峰和张伟,2016,《融资约束、金融发展与企业雇佣——来自中国企业调查数据的经验证据》,《金融研究》第10期,第111~126页。
[18] 张一林、林毅夫和龚强,2019,《企业规模、银行规模与最优银行业结构——基于新结构经济学的视角》,《管理世界》第3期,第31~47+206页。
[19] Alesina, A. and E. Zhuravskaya, 2011, “Segregation and the Quality of Government in a Cross Section of Countries”, American Economic Review, 101(5), pp.1872~1911.
[20] Ayyagari, M., A. Demirgüç-Kunt and V. Maksimovic, 2010, “Formal Versus Informal Finance: Evidence From China”, The Review of Financial Studies, 23(8),pp.3048~3097.
[21] Balakrishnan, K. and A. Ertan, 2021, “Credit information sharing and loan loss recognition”, The Accounting Review, 96(4), pp.27~50.
[22] Ball, I., 2025, “Scoring strategic agents”, American Economic Journal: Microeconomics, 17(1),pp. 97~129.
[23] Beck, T., A. Demirgüç-Kunt and V. Maksimovic, 2005, “Financial and Legal Constraints to Growth: Does Firm Size Matter?”, The Journal of Finance, 60(1),pp. 137~177.
[24] Beck, T., A. Demirgüç-Kunt and V. Maksimovic, 2008, “Financing Patterns Around the World: Are Small Firms Different?”, Journal of Financial Economics, 89(3),pp.467~487.
[25] Bergemann, D., A. Bonatti and T. Gan, 2022, “The Economics of Social Data”, The RAND Journal of Economics, 53(2),pp.263~296.
[26] Brown, M., T. Jappelli and M. Pagano, 2009, “Information Sharing and Credit: Firm-level Evidence From Transition Countries”, Journal of Financial Intermediation, 18(2),pp.151~172.
[27] Distinguin, I., C. Rugemintwari and R. Tacneng, 2016, “Can Informal Firms Hurt Registered SMEs' Access to Credit?”, World Development, 84,pp.18~40.
[28] Djankov, S., C. McLiesh and A. Shleifer, 2007, “Private Credit in 129 Countries”, Journal of Financial Economics, 84(2),pp.299~329.
[29] Dong, Y. W., Q. Gou and H. Qiu, 2023, “Big Tech Credit Score and Default Risk—Evidence From Loan-Level Data of a Representative Microfinance Company in China”, China Economic Review, 81,p. 102010.
[30] Fazzari, S., R. G. Hubbard and B. C. Petersen, 1987, “Financing Constraints and Corporate Investment”, NBER Working Paper, No. 2387.
[31] Gambacorta, L., Y. Huang, Z. Li, H. Qiu and S. Chen, 2023, “Data Versus Collateral”, Review of Finance, 27(2),pp.369~398.
[32] Jansen, M., F. Nagel, C. Yannelis and A. L. Zhang, 2022, “Data and Welfare in Credit Markets”, University of Chicago, Becker Friedman Institute for Economics Working Paper, No.2022~88.
[33] Jappelli, T. and M. Pagano, 2002, “Information Sharing, Lending and Defaults: Cross-Country Evidence”, Journal of Banking & Finance, 26(10),pp. 2017~2045.
[34] Love, I. and N. Mylenko, 2003, “Credit Reporting and Financing Constraints”, World Bank Policy Research Working Paper,No.3142.
[35] Martinez Peria, M. S. and S. Singh, 2014, “The Impact of Credit Information Sharing Reforms on Firm Financing?”,World Bank Policy Research Working Paper,No.7013.
[36] Miller, M., 2003, “Credit Reporting Systems Around the Globe: The State of the Art in Public Credit Registries and Private Credit Reporting Firms”, In Credit Reporting Systems and the International Economy, ed. Margaret J. Miller. Cambridge, MA: MIT Press.
[37] Pagano, M. (Ed.), 2001, “Defusing Default, Incentives and Institutions”, IDB and OECD, John Hopkins University Press, Washington, DC.
[38] Pagano, M. and T. Jappelli, 1993, “Information Sharing in Credit Markets”, The Journal of Finance, 48(5),pp.1693~1718.
[39] Powell, A., N. Mylenko, M. Miller and G. Majnoni, 2004, “Improving Credit Information, Bank Regulation and Supervision: On the Role and Design of Public Credit Registries”, World Bank Policy Research Working Paper,No. 3443.
[40] Straub, S., 2005, “Informal Sector: The Credit Market Channel”, Journal of Development Economics, 78(2),pp.299~321.
[41] Tang, H., 2019, “Peer-to-Peer Lenders Versus Banks: Substitutes or Complements?”, The Review of Financial Studies, 32(5),pp.1900~1938.
[42] Zapechelnyuk, A., 2020, “Optimal Quality Certification”, American Economic Review: Insights, 2,pp.161~176.
[1] 潘红波, 周颖, 石宇欣. 上市公司壳资源、挤出效应与中小企业银行贷款成本——基于“不允许在创业板借壳上市”的准自然实验[J]. 金融研究, 2025, 538(4): 114-130.
[2] 万晓莉, 叶芸绮, 方芳. 从抵押物到现金流:间接融资如何支持创新型企业?[J]. 金融研究, 2025, 537(3): 58-75.
[3] 何昊楠, 彭玲玲, 李劢, 陈泽丰, 刘晓蕾. 金融基础设施数字化建设与普惠金融发展——基于应收账款融资的微观证据[J]. 金融研究, 2025, 537(3): 94-112.
[4] 黄叙涵, 马光荣, 熊芮. 中小企业与经济增长——理论梳理和实证研究[J]. 金融研究, 2025, 536(2): 20-38.
[5] 徐枫, 吕纤, 郑耀东. 银行竞争、卖空机制与企业融资约束[J]. 金融研究, 2024, 528(6): 132-150.
[6] 方颖, 汪怀, 郭晔. 贷款市场化定价、企业融资成本与信贷配置效率[J]. 金融研究, 2024, 526(4): 38-55.
[7] 夏俊杰, 邓尚沅, 徐铭梽. 中小企业发展与银行结构——基于进出口经营权改革的经验研究[J]. 金融研究, 2024, 533(11): 76-93.
[8] 许锐, 王艳艳, 于李胜. 专利质押贷款的创新激励效应[J]. 金融研究, 2024, 532(10): 58-75.
[9] 吕勇斌, 李志生, 郭懿晨. 逆风前行:台风灾害与银行风险行为[J]. 金融研究, 2024, 523(1): 19-37.
[10] 吴翌琳, 张旻, 于鸿君. 融资方式与企业二元创新路径选择——基于技术创新与非技术创新视角[J]. 金融研究, 2024, 523(1): 38-55.
[11] 黄卓, 陶云清, 王帅. 社会信用环境改善降低了企业违规吗?——来自“中国社会信用体系建设”的证据[J]. 金融研究, 2023, 515(5): 96-114.
[12] 陈奉功, 张谊浩. 绿色债券发行、企业绿色转型与市场激励效应[J]. 金融研究, 2023, 513(3): 131-149.
[13] 汪建新. ESG活动表现与企业升级[J]. 金融研究, 2023, 521(11): 132-152.
[14] 司登奎, 李小林, 孔东民, 江春. 利率市场化能降低企业营运风险吗?——基于融资约束和企业金融化的双重视角[J]. 金融研究, 2023, 511(1): 113-130.
[15] 申丹琳, 江轩宇. 社会信任与企业劳动投资效率[J]. 金融研究, 2022, 507(9): 152-168.
[1] 李青原, 喻淼, 董燕飞, 黄炜. 数字基础设施与家庭风险金融资产投资——基于“宽带中国”政策的证据[J]. 金融研究, 2025, 540(6): 133 -151 .
[2] 赵静梅, 何宝露. 企业声誉与违规行为——基于数字经济视角的新考证[J]. 金融研究, 2025, 541(7): 76 -94 .
[3] 邹伟, 鲁元平. 末端基础设施建设与农村包容性增长——兼论快递物流在全国统一大市场建设中的作用[J]. 金融研究, 2025, 541(7): 113 -130 .
[4] 邵全权, 王博, 柏龙飞. 风险冲击、保险保障与中国宏观经济波动[J]. 金融研究, 2017, 444(6): 1 -16 .
[5] 兰天琪, 陈运森, 赵瑞瑞, 贾宁. 股东诉讼溢出与策略性信息披露[J]. 金融研究, 2025, 539(5): 188 -206 .
[6] 韩亚东, 杨丽梅, 邢春冰, 种聪. 社保降费如何影响企业用工结构?——基于正式用工与劳务外包选择视角的分析[J]. 金融研究, 2025, 541(7): 57 -75 .
[7] 丁璇, 杨道广, 张新民. 中介机构固定搭配:“合作”抑或“合谋”——基于债券信用评级的经验证据[J]. 金融研究, 2025, 539(5): 171 -187 .
[8] 翟光宇, 薛严慨, 李静怡. 新一轮个税改革与居民消费潜能——基于综合课征和专项附加扣除的研究[J]. 金融研究, 2025, 540(6): 39 -57 .
[9] 方意, 陈姿羽, 贾妍妍. 实体经济与金融市场的风险监测与调控[J]. 金融研究, 2025, 541(7): 1 -20 .
[10] 李贺, 李婧, 姜雪晴. 估值效应对国际收支延迟调整能力的影响研究[J]. 金融研究, 2025, 539(5): 1 -20 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1