Please wait a minute...
金融研究  2025, Vol. 537 Issue (3): 40-57    
  本期目录 | 过刊浏览 | 高级检索 |
房地产市场调整、银行资产负债表与货币政策应对
高崧耀, 王佳欣, 崔百胜
国家外汇管理局外汇研究中心博士后科研工作站,北京 100033;
中国人民银行金融研究所博士后科研流动站,北京 100033;
北京大学汇丰商学院,广东深圳 518055;
上海师范大学商学院,上海 200234
Real Estate Market Adjustment, Bank Balance Sheets, and Monetary Policy Response
GAO Songyao, WANG Jiaxin, CUI Baisheng
Postdoctoral Research Workstation, Foreign Exchange Research Center, State Administration of Foreign Exchange;
Postdoctoral Research Mobile Station, Financial Research Institute, People's Bank of China;
HSBC Business School, Peking University; School of Finance and Business, Shanghai Normal University
下载:  PDF (2030KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文通过经验事实和实证分析发现,房地产投资和社会信贷高度相关,并且房价下降导致社会信贷供给下降。为此,本文构建包含有房地产和非房地产的多部门动态随机一般均衡模型,分别引入地方政府刻画土地财政行为、引入银行部门刻画金融摩擦,分析房地产需求下降对商业银行资产负债表的影响。研究表明,一方面,房地产需求下降导致房地产部门投资及其资产价格下降;另一方面,房价下降导致土地价格下降,地方政府土地出让收入减少,进而非房地产部门资本需求及其资产价格下降。两部门资产价格下降,导致商业银行净资产下降,造成其信贷供给减少。如果央行下调存款准备金率,可以改善商业银行资产负债表,并提升信贷供给。如果央行下调存量房贷利率,虽然有助于提升家庭消费,但也会导致银行净值下降、信贷供给减少,此时应补充商业银行资本金。本文为理解房价下行对社会信贷影响机制提供了新视角,为货币政策工具选择提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高崧耀
王佳欣
崔百胜
关键词:  房地产市场调整  银行资产负债表  金融摩擦  土地财政  货币政策应对    
Summary:  In August 2020, the People's Bank of China, along with the China Banking and Insurance Regulatory Commission and other institutions, introduced the “Three Red Lines” policy targeting the real estate sector. Subsequently, China's real estate market entered a downward trajectory, leading to a contraction in bank credit. Why did this happen? This paper analyzes the transmission mechanisms and pathways through which the real estate market adjustment since 2021 has contributed to an overall decline in social investment. Furthermore, it examines the effectiveness of different monetary policy measures and the combined effects of policy interventions.
Empirical evidence reveals that, on one hand, the real estate sector in China is highly intertwined with bank credit. A decline in housing prices leads to a reduction in real estate loans, which, in turn, results in the contraction of commercial banks' balance sheets and a decrease in the scale of credit. On the other hand, falling housing prices lead to a decline in land prices, reducing local government fiscal revenue and subsequently diminishing capital demand from non-real estate sectors. Based on these facts and logical connections, this paper develops a multi-sector dynamic stochastic general equilibrium (DSGE) model that incorporates both real estate and non-real estate sectors. The model introduces local governments to depict land financing behavior and incorporates the banking sector to capture financial frictions. This framework is used to analyze the impact of declining real estate demand on commercial banks' balance sheets, as well as the effectiveness of various policies in improving commercial banks' balance sheets and the broader macroeconomy.
Theoretical model results indicate that, on one hand, a decline in real estate demand leads to a decrease in investment in the real estate sector and a drop in asset prices. On the other hand, falling housing prices result in lower land prices, reducing local government land revenues, which in turn decreases capital demand and asset prices in the non-real estate sector. The decline in asset prices across both sectors leads to a reduction in commercial banks' net worth, thereby constraining their credit supply. If the central bank lowers the reserve requirement ratio (RRR), it can improve commercial banks' balance sheets and enhance credit supply. If the central bank reduces the interest rates on existing housing loans, this could help boost household consumption but may also reduce banks' net worth, further constraining credit supply. In this case, it would be necessary to inject additional capital into commercial banks.
This paper offers the following policy recommendations. First, in the short term, targeted policies should be implemented to improve the balance sheets of commercial banks, while in the long term, efforts should be made to reduce the dependence of commercial banks on the real estate sector. Second, when reducing interest rates on existing housing loans, it is essential to simultaneously inject capital into commercial banks. Third, fiscal and taxation system reforms should be advanced in a coordinated manner to expand local tax sources.
The contributions of this paper are primarily reflected in three aspects. First, although existing literature has explored the connections between the real estate market and commercial banks, the analysis of banks' balance sheets remains insufficient. This paper collects and organizes relevant data to analyze the relationship among the real estate market, commercial banks' balance sheets, and the macroeconomy. It provides a new perspective for understanding the interactions between the real estate market and the financial system, as well as empirical evidence for building theoretical models. Second, previous studies have mostly focused on the crowding-out effect of rising housing prices on the non-real estate sector. However, in the current context of declining housing prices, not only has investment in the non-real estate sector failed to improve, but the overall scale of social credit has also declined. Following Gertler and Karadi (2011), this paper incorporates the banking sector into a DSGE model to analyze the impact of declining housing prices on land financing, while also considering the dual negative effects of banking financial frictions on credit supply. The findings differ from the transmission mechanisms studied during periods of rising housing prices and offer theoretical and practical significance for understanding the impact of declining housing prices on the overall credit scale and macroeconomic fluctuations. Third, there is a relative lack of literature within a general equilibrium framework that examines the effects of reducing the RRR and lowering interest rates on existing housing loans. Given the close ties among China's real estate market, commercial banks, and land financing, this paper introduces three policy tools: reducing the RRR, lowering interest rates on existing housing loans, and injecting capital into commercial banks. It analyzes the transmission pathways and effects of these policy tools on housing price regulation.
Keywords:  Real Estate Market Adjustment    Commercial Bank Balance Sheet    Financial Friction    Land Finance    Monetary Policy Response
JEL分类号:  E32   E58   E62  
基金资助: * 本文感谢国家自然科学基金应急管理项目(72341020)和国家社会科学基金重点项目(21AJY024)的资助。感谢匿名审稿人的宝贵意见,文责自负。本文仅代表个人观点,与作者所在单位无关。
通讯作者:  崔百胜,经济学博士,教授,上海师范大学商学院,E-mail:baishengcui@126.com.   
作者简介:  高崧耀,经济学博士,博士后,国家外汇管理局外汇研究中心博士后科研工作站和中国人民银行金融研究所博士后科研流动站联合培养,E-mail:gaosy0107@163.com.
王佳欣,博士研究生,北京大学汇丰商学院,E-mail:jiaxin.wang@stu.pku.edu.cn.
引用本文:    
高崧耀, 王佳欣, 崔百胜. 房地产市场调整、银行资产负债表与货币政策应对[J]. 金融研究, 2025, 537(3): 40-57.
GAO Songyao, WANG Jiaxin, CUI Baisheng. Real Estate Market Adjustment, Bank Balance Sheets, and Monetary Policy Response. Journal of Financial Research, 2025, 537(3): 40-57.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V537/I3/40
[1]董丰、周基航和贾彦东,2023,《资产泡沫与最优货币政策》,《金融研究》第6期,第1~19页。
[2]何青、钱宗鑫和郭俊杰,2015,《房地产驱动了中国经济周期吗?》,《经济研究》第12期,第41~53页。
[3]侯成琪和龚六堂,2014,《货币政策应该对住房价格波动作出反应吗——基于两部门动态随机一般均衡模型的分析》,《金融研究》第10期,第15~33页。
[4]康立、龚六堂和陈永伟,2013,《金融摩擦、银行净资产与经济波动的行业间传导》,《金融研究》第5期,第32~46页。
[5]刘建丰、于雪、彭俞超和许志伟,2020,《房产税对宏观经济的影响效应研究》,《金融研究》第8期,第34~53页。
[6]陆磊和刘学,2020,《违约与杠杆周期——一个带有救助的金融加速器模型》,《金融研究》第5期,第1~20页。
[7]马理和范伟,2021,《促进“房住不炒”的货币政策与宏观审慎“双支柱”调控研究》,《中国工业经济》第3期,第5~23页。
[8]马勇、姜伊晴和郭锐,2023,《经济开放、金融开放与双支柱调控的政策工具组合研究》,《金融研究》第11期,第1~20页。
[9]马勇和姚驰,2021,《双支柱下的货币政策与宏观审慎政策效应——基于银行风险承担的视角》,《管理世界》第6期,第51~69页。
[10]梅冬州、崔小勇和吴娱,2018,《房价变动、土地财政与中国经济波动》,《经济研究》第1期,第35~49页。
[11]孟宪春,2023,《房价对家庭债务和财富分布的影响:理论机制与应对策略》,《经济研究》第4期,第171~189页。
[12]孟宪春、张屹山和李天宇,2018,《有效调控房地产市场的最优宏观审慎政策与经济“脱虚向实”》,《中国工业经济》第6期,第81~97页。
[13]荣昭和王文春,2014,《房价上涨和企业进入房地产——基于我国非房地产上市公司数据的研究》,《金融研究》第4期,第158~173页。
[14]吴迪、张楚然和侯成琪,2022,《住房价格、金融稳定与宏观审慎政策》,《金融研究》第7期,第57~75页。
[15]吴海民,2012,《资产价格波动、通货膨胀与产业“空心化”——基于我国沿海地区民营工业面板数据的实证研究》,《中国工业经济》第1期,第46~56页。
[16]徐海霞和吕守军,2019,《我国货币政策与宏观审慎监管的协调效应研究》,《财贸经济》第3期,第53~67页。
[17]许宪春、贾海、李皎和李俊波,2015,《房地产经济对中国国民经济增长的作用研究》,《中国社会科学》第1期,第84~101页。
[18]赵扶扬、王忏和龚六堂,2017,《土地财政与中国经济波动》,《经济研究》第12期,第46~61页。
[19]朱军和许志伟,2018,《财政分权、地区间竞争与中国经济波动》,《经济研究》第1期,第21~34页。
[20]Bernanke, B. S., M. Gertler and S. Gilchrist, 1999, “The Financial Accelerator in a Quantitative Business Cycle Framework,” Handbook of Macroeconomics, 1(C), pp. 1341~1393.
[21]Chang, C., K. Chen, D. F. Waggoner, and T. Zha, 2016, “Trends and Cycles in China's Macroeconomy”, NBER Macroeconomics Annual, 30(1), pp.1~84.
[22]Christensen, I. and A. Dib, 2008, “The Financial Accelerator in an Estimated New Keynesian Model”, Review of Economic Dynamics, 11(1), pp.155~178.
[23]Gertler, M. and P. Karadi, 2011, “A Model of Unconventional Monetary Policy”, Journal of Monetary Economics, 58(1), pp.17~34.
[24]Gertler, M., S. Gilchrist and F. M. Natalucci, 2007, “External Constraints on Monetary Policy and the Financial Accelerator ”, Journal of Money, Credit and Banking, 39(2-3), pp. 295~330.
[25]Greenwald, D., 2018, “The Mortgage Credit Channel of Macroeconomic Transmission”, SSRN Working Paper.
[26]Guerrieri, L. and M. Iacoviello, 2017, “Collateral Constraints and Macroeconomic Asymmetries ”, Journal of Monetary Economics, 90, pp.28~49.
[27]Iacoviello, M., 2005, “House Prices, Borrowing Constraints, and Monetary Policy in the Business Cycle”, American Economic Review, 95(3), pp.739~764.
[28]Jiang, S., J. Miao and Y., Zhang, 2022, “China's Housing Bubble, Infrastructure Investment, and Economic Growth”, International Economic Review, 63(3), pp.1189~1237.
[29]Leamer, E. E., 2007. “Housing is the Business Cycle”, NBER Working Paper, No.13428.
[30]Liu, Z., P. Wang and T. Zha, 2013, “Land‐price Dynamics and Macroeconomic Fluctuations”, Econometrica, 81(3), pp.1147~1184.
[31]Mendicino, C. and M. T. Punzi, 2014, “House Prices, Capital Inflows, and Macroprudential Policy”, Journal of Banking and Finance, 49, pp.337~355.
[32]Mendicino, C., K. Nikolov, J. Suarez and D. Supera, 2018, “Optimal Dynamic Capital Requirements”, Journal of Money, Credit and Banking, 50(6), pp.1271~1297.
[33]Sims, E., and J.C. Wu, 2018, “Evaluating Central Banks Tool Kit: Past, Present, and Future”, Journal of Monetary Economics, 118, pp.135~160.
[34]Tavman, Y., 2015, Optimal Policy Before, During and After the Crisis, PhD thesis, University of York.
[1] 董丰, 周基航, 贾彦东. 资产泡沫与最优货币政策[J]. 金融研究, 2023, 516(6): 1-19.
[2] 刘孟儒, 沈若萌. 结售汇如何影响银行风险承担水平?——基于银行资产负债表的视角[J]. 金融研究, 2022, 503(5): 57-75.
[3] 文竹, 金涛. 关于中国经济增长模式的一个解释框架——基于“土地财政”的演进分析[J]. 金融研究, 2022, 502(4): 1-17.
[4] 战明华, 李帅, 姚耀军, 吴周恒. 投资潮涌、双重金融摩擦与货币政策传导——转型时期货币政策的结构调控功能探究[J]. 金融研究, 2021, 489(3): 1-17.
[5] 王博, 徐飘洋. 碳定价、双重金融摩擦与“双支柱”调控[J]. 金融研究, 2021, 498(12): 57-74.
[6] 梅冬州, 温兴春, 王思卿. 房价调控、地方政府债务与宏观经济波动[J]. 金融研究, 2021, 487(1): 31-50.
[7] 杜两省, 程博文. 金融摩擦、收入风险与财富不平等[J]. 金融研究, 2020, 481(7): 75-94.
[8] 闫先东, 张鹏辉. 土地价格、土地财政与宏观经济波动[J]. 金融研究, 2019, 471(9): 1-18.
[9] 司登奎, 葛新宇, 曾涛, 李小林. 房价波动、金融稳定与最优宏观审慎政策[J]. 金融研究, 2019, 473(11): 38-56.
[10] 林滨, 王弟海, 陈诗一. 企业效率异质性、金融摩擦的资源再分配机制与经济波动[J]. 金融研究, 2018, 458(8): 17-32.
[11] 鲁元平, 张克中, 欧阳洁. 土地财政阻碍了区域技术创新吗?——基于267个地级市面板数据的实证检验[J]. 金融研究, 2018, 455(5): 101-119.
[12] 温信祥, 苏乃芳. 大资管、影子银行与货币政策传导[J]. 金融研究, 2018, 460(10): 38-54.
[13] 金鹏辉, 王营, 张立光. 稳增长条件下的金融摩擦与杠杆治理[J]. 金融研究, 2017, 442(4): 78-94.
[14] 高然, 龚六堂. 土地财政、房地产需求冲击与经济波动[J]. 金融研究, 2017, 442(4): 32-45.
[15] 陈登科, 陈诗一. 中国财政支出乘数研究——基于金融摩擦与“超低利率”的视角[J]. 金融研究, 2017, 450(12): 17-32.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[5] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[6] 王攀娜, 罗宏. 放松卖空管制对分析师预测行为的影响——来自中国准自然实验的证据[J]. 金融研究, 2017, 449(11): 191 -206 .
[7] 李丹, 庞晓波, 方红生. 财政空间与中国政府债务可持续性[J]. 金融研究, 2017, 448(10): 1 -17 .
[8] 洪正, 张硕楠, 张琳. 经济结构、财政禀赋与地方政府控股城商行模式选择[J]. 金融研究, 2017, 448(10): 83 -98 .
[9] 项后军, 闫玉. 理财产品发展、利率市场化与银行风险承担问题研究[J]. 金融研究, 2017, 448(10): 99 -114 .
[10] 潘越, 肖金利, 戴亦一. 文化多样性与企业创新:基于方言视角的研究[J]. 金融研究, 2017, 448(10): 146 -161 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1