Please wait a minute...
金融研究  2024, Vol. 530 Issue (8): 113-131    
  本期目录 | 过刊浏览 | 高级检索 |
波动率指数与价格发现——基于中国市场的理论拓展
王熙, 黄德金, 高明
北京大学经济学院,北京 100871
Volatility Index and Price Discovery: A General Model Inspired by China Market
WANG Xi, HUANG Dejin, GAO Ming
School of Economics, Peking University
下载:  PDF (992KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 波动率指数(Volatility Index,VIX)作为重要的市场情绪和系统性风险衡量指标,受到了各国监管部门和投资机构广泛关注。学术文献通常认为VIX可以正向预测股票市场未来超额收益率,并在美国等市场得到验证。然而,基于中国A股市场构建的VIX却与A股未来超额收益率负相关,即便使用Martin(2017)提出的可提高美国市场价格发现能力的修正指数SVIX,也是负相关关系。这一实证结果违背了现代金融学的基本原理:系统性风险承担应与期望超额收益率正相关。本文在Martin(2017)基础上,基于中国市场特征刻画股票市场期望收益率的近似上界,提出“流动性修正的波动率指数(LVIX)”,将SVIX拓展至允许看涨看跌期权平价公式背离的情形。与VIX和SVIX负向预测A股超额收益率不同,LVIX能够正向预测A股超额收益率且预测系数为1,与资产定价理论相契度更高,并且LVIX还能改进SVIX对于美国市场的理论相契度。本文的理论拓展和指标构建,不仅对资产定价具有理论贡献,也对衡量我国金融市场系统性风险和期望超额收益率有现实意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王熙
黄德金
高明
关键词:  资产定价  波动率指数  价格发现  系统性风险    
Summary:  This paper presents an approximate upper bound for the equity premium, utilizing a generalized volatility index named LVIX. LVIX is derived from index option prices and is designed to account for potential deviations from put-call parity. The motivation for constructing LVIX emerges from the observation that both the VIX and SVIX, constructed based on the Chinese stock market data, negatively predict the market excess returns.
As a crucial indicator of fear sentiment and systemic risk, the VIX attracts significant attention from both regulatory authorities and financial institutions. While previous studies have shown a positive link between VIX and future market excess returns, this relationship is notably absent in the Chinese context. As an alternative, Martin (2017 QJE) explores the price discovery ability of options and relates the market's expected return to its risk-neutral variance, proposing a modified index, the so-called SVIX, to measure the expected excess return. Furthermore, Martin (2017) finds that not only SVIX provides a lower bound for equity premium, but it is also close to its true value. In other words, the predictive coefficient of SVIX concerning the excess return of the US market is 1, providing a direct measure of the equity premium. However, our empirical results show that SVIX's predictive coefficient for the excess return of the Chinese stock market remains negative.
Modern asset pricing theory posits that higher systematic risk should correspond to higher expected returns. Though it seems that VIX and SVIX can provide measurements of riskiness and the expected risk premium on the U.S. market, both fail to measure the riskiness of the Chinese Stock Market. The negative correlation between SVIX (VIX) and future excess return on the Chinese stock market challenges the risk-premium tradeoff principle. If one adopts VIX or SVIX to approximate the riskiness of the Chinese stock market, the more risk she bears, the less expected return she can obtain.
Building on these insights, this paper instead extends Martin's (2017) framework into a more general setting to estimate the risk-neutral variance of excess returns. In theory, both the SVIX and VIX are designed to measure the uncertainty associated with risky returns. The VIX quantifies the risk-neutral entropy of the risky returns, while the SVIX provides an alternative measure of the risk-neutral variance. This duality justifies the common practice of adopting both indices as indicators of asset riskiness.
However, both VIX and SVIX ignore the potential put-call parity violation. Though the violation of put-call parity tends to be minimal in the US market, our study reveals that the violation is significant in the Chinese stock market.
Therefore, this paper extends the framework of Martin(2017) to characterize an approximated upper bound of the risk premium, not only taking the potential violation of put-call parity into account but also providing an approximation of risk-neutral variance estimation when the parity violation is not ignorable. Though it is straightforward to extend the estimation of risk neural variance to accommodate the potential violation of put-call parity, a direct result from this estimation is that the risk-neutral variance of the Chinese stock market can be negative if one adopts Carr and Madan's (2001) formula. For example, the mean value of this naive estimation of the risk-neutral variance of the Chinese stock market is-0.0952 from Jan 2016 to Jul 2017 and is-0.0807 from Feb 2020 to Jun 2020.
Our theoretical analysis results in a more general index, called LVIX, where “L” stands for the market frictions, e.g., liquidity constraints. Utilizing data spanning from January 2016 to December 2023 for China-sourced from Wind, and from January 1996 to December 2020 for the U.S. sourced from Option Metrics, we have uncovered several key findings: (1) the predictive coefficients of Rf,t→T·LVIX2t→T of SSE50 and S&P500 are both close to 1, confirming the theoretical derivation. In contrast, the predictive coefficient of Rf,t→T·SVIX2t→T is negative for the SSE50 though close to 1 for S&P500. (2) This predictive efficacy of Rf,t→T·LVIX2t→T remains robust even after accounting for various other predictive indices, including price-to-earnings ratios and realized returns. (3) When compared to a passive buy-and-hold strategy or an investment strategy predicated on SVIX, a strategy based on LVIX significantly enhances out-of-sample investment performance. Theoretically, the difference between LVIX and SVIX is tiny when the violation of put-call parity is minimal. However, SVIX is not proportional to the risk-neutral variance of excess return when violation of put-call parity is significant, in this case, LVIX remains to be proportional to an upper bound of the risk-neutral variance. In sum, our analysis reveals that LVIX offers not only a real-time measure of the risk premium but also a sophisticated, theory-driven method for assessing market risk.
Keywords:  Asset Pricing    Volatility Index    Price Discovery    Systematic Risk
JEL分类号:  G12   G14  
基金资助: * 本研究未随正文刊载的附录可在http://scholar.pku.edu.cn/gao/LVIX下载。感谢国家社会科学基金(23BJL025)、国家自然科学基金(72073004)、北京市社会科学基金(21JCC082)和北京大学经济学院中青年教师科研种子基金的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  高 明,经济学博士,长聘副教授,北京大学经济学院,E-mail:gao@pku.edu.cn.   
作者简介:  王 熙,经济学博士,长聘副教授,北京大学经济学院,E-mail:wang.x@pku.edu.cn.
黄德金,博士研究生,北京大学经济学院,E-mail:huangdejin@stu.pku.edu.cn.
引用本文:    
王熙, 黄德金, 高明. 波动率指数与价格发现——基于中国市场的理论拓展[J]. 金融研究, 2024, 530(8): 113-131.
WANG Xi, HUANG Dejin, GAO Ming. Volatility Index and Price Discovery: A General Model Inspired by China Market. Journal of Financial Research, 2024, 530(8): 113-131.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V530/I8/113
[1]丛明舒,2018,《中国场内期权市场研究——基于中美关于期权隐含方差的差异》,《金融研究》第12期,第189~206页。
[2]邓可斌、关子桓和陈彬,2018,《宏观经济政策与股市系统性风险——宏微观混合β估测方法的提出与检验》,《经济研究》第8期,第68~83页。
[3]姜富伟、凃俊、David E. Rapach、Jack K. Strauss和周国富,2011,《中国股票市场可预测性的实证研究》,《金融研究》第9期,第107~121页。
[4]马腾、张晓燕和李志勇,2024:《期权隐含信息和价格发现——基于中国场内期权市场的研究》,《金融研究》第1期,第169~186页。
[5]易艳萍、黄德金和王熙,2024:《基于宏观大数据的GDP即时预测》,《经济学(季刊)》第3期,第843~860页。
[6]杨子晖和李东承,2021:《系统性风险指标是否具有前瞻性的预测能力》,《经济学(季刊)》第2期,第617~644页。
[7]张自力、闫红蕾和张楠,2020:《股票网络、系统性风险与股票定价》,《经济学(季刊)》第1期,第329~350页。
[8]郑振龙、秦明和陈蓉,2023:《期权平价关系偏离与异质信念》,《经济学(季刊)》第3期,第1035~1051页。
[9]Bansal, R. and A. Yaron, 2004, “Risk for the Long Run: A Potential Resolution of Asset Pricing Puzzles”, Journal of Finance, 59(4), 1481~1509.
[10]Battalio, R. and P. Schultz, 2011, “Regulatory Uncertainty and Market Liquidity: The 2008 Short Sale Ban's Impact on Equity Option Markets”, Journal of Finance, 66(6), 2013~2053.
[11]Campbell, J. Y. and R. J. Shiller, 1988, “The Dividend-price Ratio and Expectations of Future Dividends and Discount Factors”, Review of Financial Studies, 1(3), 195~228.
[12]Carr, P. and D. Madan, 2001, “Towards a Theory of Volatility Trading”, In: Jouini, E., J. Cvitanic and M. Musiela (eds.), Handbooks in Mathematical Finance, Cambridge University Press.
[13]Chang, B. Y., P. Christoffersen and K. Jacobs, 2013, “Market Skewness Risk and the Cross Section of Stock Returns”, Journal of Financial Economics, 107(1), 46~68.
[14]Cochrane, J., 2005, Asset pricing, Princeton: Princeton University Press.
[15]Conrad, J., R. F. Dittmar and E. Ghysels, 2013, “Ex-Ante Skewness and Expected Stock Returns”, Journal of Finance, 68 (1), 85~124.
[16]Cremers, M. and D. Weinbaum, 2010, “Deviations from Put-Call Parity and Stock Return Predictability”, Journal of Financial and Quantitative Analysis, 45(2), 335~367.
[17]Goyal, A. and I. Welch, 2008, “A Comprehensive Look at the Empirical Performance of Equity Premium Prediction”, Review of Financial Studies, 21, 1455~1508.
[18]Greenwood, R. and A. Shleifer, 2014, “Expectations of Returns and Expected Returns”, Review of Financial Studies, 27, 714~746.
[19]Manaster, S. and R. Rendleman, 1982, “Option Prices as Predictors of Equilibrium Stock Prices”, Journal of Finance, 37(4), 1043~1057.
[20]Manela, A. and A. Moreira, 2017, “News Implied Volatility and Disaster Concerns”, Journal of Financial Economics, 123(1), 137~162.
[21]Martin, I., 2017, “What is the Expected Return on the Market?”, Quarterly Journal of Economics, 367~433.
[22]Martin, I. and C. Wagner, 2019, “What is the Expected Return on a Stock?”, Journal of Finance, 74(4), 1887~1929.
[23]Mencia, J. and E. Sentana, 2013, “Valuation of VIX derivatives”, Journal of Financial Economics, 108(2), 367~391.
[24]Park, Y. H., 2020, “Variance Disparity and Market Frictions”, Journal of Econometrics, 214(2), 326~348.
[25]Stilger, P. S., A. Kostakis and S. H. Poon, 2017, “What does Risk-Neutral Skewness Tell Us about Future Stock Returns?”, Management Science, 63(6), 1814~1834.
[26]Tu, J. and G. Zhou, 2010, “Incorporating Economic Objectives into Bayesian Priors: Portfolio Choice under Parameter Uncertainty”, Journal of Financial and Quantitative Analysis, 45(4), 959~986.
[1] 方意, 和文佳, 王琦. 非核心负债业务、流动性渠道和银行业系统性风险:理论模型与经验分析[J]. 金融研究, 2024, 525(3): 20-37.
[2] 范中杰, 何平, 刘泽豪. 风险传染、银行间市场骤冷及防范化解政策——基于金融网络模型视角[J]. 金融研究, 2024, 524(2): 38-56.
[3] 马腾, 张晓燕, 李志勇. 期权隐含信息和价格发现——基于中国场内期权市场的研究[J]. 金融研究, 2024, 523(1): 169-186.
[4] 陈彬彬, 刘善存, 张强, 曾庆铎. 基于理性预期均衡的金融期货定价研究:信息驱动还是套利驱动?[J]. 金融研究, 2023, 518(8): 170-188.
[5] 李志辉, 朱明皓, 李源, 李政. 我国金融机构的系统性风险溢出研究:测度、渠道与防范对策[J]. 金融研究, 2023, 514(4): 55-73.
[6] 杨子晖, 张平淼, 林师涵. 系统性风险与企业财务危机预警——基于前沿机器学习的新视角[J]. 金融研究, 2022, 506(8): 152-170.
[7] 张伟平, 曹廷求. 中国房地产企业间系统性风险溢出效应分析——基于尾部风险网络模型[J]. 金融研究, 2022, 505(7): 94-114.
[8] 张琳, 廉永辉, 方意. 政策连续性与商业银行系统性风险[J]. 金融研究, 2022, 503(5): 95-113.
[9] 王永钦, 段白鸽, 钱佳辉. 中国的“影子保险”:来自监管自然实验的证据[J]. 金融研究, 2022, 502(4): 18-38.
[10] 赵静, 郭晔. 金融产品持股与银行系统性风险——兼论《商业银行股权管理暂行办法》的影响[J]. 金融研究, 2022, 499(1): 57-75.
[11] 徐国祥, 吴婷, 王莹. 基于共同冲击和异质风险叠加传导的风险传染研究——来自中国上市银行网络的传染模拟[J]. 金融研究, 2021, 490(4): 38-54.
[12] 陈国进, 蒋晓宇, 刘彦臻, 赵向琴. 资产透明度、监管套利与银行系统性风险[J]. 金融研究, 2021, 489(3): 18-37.
[13] 王辉, 梁俊豪. 基于动态因子Copula模型的我国银行系统性风险度量[J]. 金融研究, 2020, 485(11): 58-75.
[14] 许荣, 刘成立. 限制交易政策如何影响期现关系?——对股指期货价格发现功能的实证检验[J]. 金融研究, 2019, 464(2): 154-168.
[15] 李政, 梁琪, 方意. 中国金融部门间系统性风险溢出的监测预警研究——基于下行和上行ΔCoES指标的实现与优化[J]. 金融研究, 2019, 464(2): 40-58.
[1] 李丹, 庞晓波, 方红生. 财政空间与中国政府债务可持续性[J]. 金融研究, 2017, 448(10): 1 -17 .
[2] 潘彬, 王去非, 金雯雯. 时变视角下非正规借贷利率的货币政策反应研究[J]. 金融研究, 2017, 448(10): 52 -67 .
[3] 祝继高, 李天时, 尤可畅. 房地产价格波动与商业银行贷款损失准备——基于中国城市商业银行的实证研究[J]. 金融研究, 2017, 447(9): 83 -98 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[6] 邓路, 刘瑞琪, 江萍. 公司超额银行借款会导致过度投资吗?[J]. 金融研究, 2017, 448(10): 115 -129 .
[7] 茅锐. 企业创新、生产力进步与经济收敛:产业集聚的效果[J]. 金融研究, 2017, 446(8): 83 -99 .
[8] 李锋森. 我国融资融券助涨助跌了吗?——基于波动非对称性视角[J]. 金融研究, 2017, 440(2): 147 -162 .
[9] 高昊宇, 杨晓光, 叶彦艺. 机构投资者对暴涨暴跌的抑制作用:基于中国市场的实证[J]. 金融研究, 2017, 440(2): 163 -178 .
[10] 潘越, 肖金利, 戴亦一. 文化多样性与企业创新:基于方言视角的研究[J]. 金融研究, 2017, 448(10): 146 -161 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1