Please wait a minute...
金融研究  2024, Vol. 530 Issue (8): 39-57    
  本期目录 | 过刊浏览 | 高级检索 |
美国三类不确定性冲击、生产网络传导与中国行业尾部风险
李政, 李薇, 李丽雯
天津财经大学金融学院,天津 300222;
江西财经大学金融学院,江西南昌 330013
Three Types of US Uncertainty Shocks, Production Network Transmission and China's Industry Tail Risks
LI Zheng, LI Wei, LI Liwen
School of Finance, Tianjin University of Finance and Economics;
School of Finance, Jiangxi University of Finance and Economics
下载:  PDF (856KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于生产网络视角,本文利用异质性空间自回归(HSAR)模型,测度美国经济不确定性、金融不确定性及经济政策不确定性对我国行业尾部风险的直接效应与网络效应,对比分析美国三类不确定性冲击的差异性影响,以及中美贸易摩擦期间三类冲击作用效果的变化,并结合行业前向关联与后向关联,进一步探讨各类冲击依托产业链的主要传导方向。研究发现:第一,美国经济不确定性和金融不确定性上升将推升我国行业尾部风险,并且相较于金融不确定性,经济不确定性的推升作用更大。第二,生产网络会放大美国不确定性对我国行业尾部风险的冲击,总效应的40%以上是由行业间投入产出关联带来的网络效应,其中,基础化工和社会服务行业受到的网络效应居于前列。第三,美国不确定性冲击经由生产网络传播,将导致我国各行业尾部风险整体同向变动;美国经济不确定性和金融不确定性对实体行业的网络传导效应更大,美国经济政策不确定性对金融行业的网络传导效应更大。第四,美国经济不确定性和金融不确定性冲击主要从下游行业向上游行业传导,经济政策不确定性反之。第五,相较于其他时期,中美贸易摩擦期间美国金融不确定性对我国行业尾部风险的影响更为剧烈。本文可为我国精准把握和有效应对外部冲击提供实证依据及有益启示。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李政
李薇
李丽雯
关键词:  美国不确定性  生产网络  直接效应  网络效应  HSAR模型    
Summary:  At present, momentous changes of a like not seen in a century are accelerating across the world, “black swan” and “gray rhino” events are frequent, global uncertainty has increased significantly, and preventing imported risks is a key task to safeguard China's national security. US uncertainty is an important external shock, and its international spillover effect cannot be ignored. Therefore, in the context of continuous promotion of China's high-standard opening up, it is of great significance for China to prevent and mitigate major risks and safeguard national security by clarifying the impact of US uncertainty on China, grasping the key types of US uncertainty shocks needed to be prevented, and further clarifying the internal mechanism of US uncertainty shocks affecting China's economy from the perspective of production network.
Based on the production network perspective, this paper uses the newly developed heterogeneous spatial auto-regressive (HSAR) model to measure the direct and network effects of US uncertainty on the tail risk of China's industries and comparatively analyzes the differential impacts of the US economic and financial and economic policy uncertainty shocks. On this basis, this paper further compares industry forward and backward linkages to clarify the main transmission direction of each type of shock along the industrial chain and investigates the changes in the effects of the three types of shocks during the Sino-US trade friction.
It is found that, firstly, the rise in US economic and financial uncertainty will exacerbate China's industry tail risk, while the rise in economic policy uncertainty suppresses China's industry tail risk. Moreover, compared with financial uncertainty, US economic uncertainty has a greater effect on the tail risk of China's industries. Secondly, production network plays a role in amplifying the impact of US uncertainty on the tail risk of China's industries. And more than 40% of the total effect is the network effect brought about by input-output linkages among China's industries. The basic chemical and social service industries suffer the highest network effects. Thirdly, US uncertainty shocks can cause an overall homogeneous change in China's industry tail risk through the production network. US economic and financial uncertainty has a greater network effect on China's real economy industries, and US economic policy uncertainty has a greater network effect on China's financial industries. Fourthly, US economic and financial uncertainty shocks are mainly transmitted from downstream industries to upstream industries, and economic policy uncertainty shocks are mainly transmitted from upstream industries to downstream industries. Fifthly, the impact of US financial uncertainty on China's industry tail risks during the Sino-US trade friction period was greater compared to other periods.
This paper provides empirical evidence and useful insights for Chinese policymakers to accurately grasp and effectively deal with external shocks. Based on the above conclusions, this paper puts forward the following policy recommendations. First, we need to monitor all types of US uncertainty separately and accurately grasp the sources of risks. Second, the production network of China's industries should be included in the monitoring and prevention system of external shocks, and the path of risk contagion should be clarified according to the production network, to block the cross-industry contagion of risks in a timely manner. Third, efforts should be made to enhance the resilience of industrial and supply chains, improve the ability of various industries to defend against external shocks, and especially accelerate the diversification of supply chains in the basic chemical and social service industries.
The marginal contributions of this paper are mainly reflected in the following three aspects. First, this paper expands the research on the spillover effect of US uncertainty shocks to the industry level and uses tail risk to accurately characterize the industry performance under the shocks. Second, this paper introduces the production network when exploring the impact of US economic, financial and economic policy uncertainty on China's industries, uses the newly developed heterogeneous spatial auto-regressive model to quantify the direct and network effects of the three types of shocks, and examines the main transmission direction of the shocks along the industrial chain, and clarifies the internal mechanism of US uncertainty shocks affecting China's economy. Third, it reveals the changes in the effects of US uncertainty shocks during the Sino-US trade friction, and further enriches the research on the economic consequences of Sino-US trade friction.
Keywords:  US Uncertainty    Production Network    Direct Effects    Network Effects    HSAR Model
JEL分类号:  C23   E44   F30  
基金资助: * 本文感谢国家社科基金重大项目(22&ZD120)、国家社科基金一般项目(21BTJ014,22BJL036)、教育部人文社会科学重点研究基地重大项目(22JJD790046)和教育部人文社会科学研究规划基金项目(19YJA790065)的资助。感谢天津财经大学金融学院贾妍妍的技术支持。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  李丽雯,经济学博士,讲师,江西财经大学金融学院,E-mail:ky1213258@163.com.   
作者简介:  李 政,经济学博士,教授,天津财经大学金融学院,E-mail:lizheng@tjufe.edu.cn.
李 薇,硕士研究生,天津财经大学金融学院,E-mail:liwei002023@163.com.
引用本文:    
李政, 李薇, 李丽雯. 美国三类不确定性冲击、生产网络传导与中国行业尾部风险[J]. 金融研究, 2024, 530(8): 39-57.
LI Zheng, LI Wei, LI Liwen. Three Types of US Uncertainty Shocks, Production Network Transmission and China's Industry Tail Risks. Journal of Financial Research, 2024, 530(8): 39-57.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V530/I8/39
[1]邓创、吴健和吴超,2022a,《外部经济、金融不确定性与我国的宏观经济下行风险》,《统计研究》第6期,第36~51页。
[2]邓创、赵珂和吴超,2022b,《中国政策不确定性会加剧经济与金融不确定性吗》,《系统工程理论与实践》第3期,第559~574页。
[3]李政、李丽雯和刘淇,2024a,《我国行业间尾部风险溢出的测度及时空驱动因素研究》,《统计研究》第2期,第64~76页。
[4]李政和李薇,2024,《美国不确定性冲击对全球股市波动的影响研究》,《财经理论与实践》第2期,第48~55页。
[5]李政、刘淇和梁琪,2019,《基于经济金融关联网络的中国系统性风险防范研究》,《统计研究》第2期,第23~37页。
[6]李政、武坤和石晴,2024b,《外部输入性冲击与中国行业波动风险——基于四类不确定性的研究》,《北京工商大学学报(社会科学版)》第4期,第116~128页。
[7]谭小芬、曹倩倩和赵茜,2021,《全球风险偏好、美国经济政策不确定性与跨境资本流动——基于新兴经济体基金数据的证据》,《南开经济研究》第5期,第80~99页。
[8]杨子晖、陈雨恬和张平淼,2020,《股票与外汇市场尾部风险的跨市场传染研究》,《管理科学学报》第8期,第54~77页。
[9]杨子晖、王姝黛和梁方,2023,《产业链结构新视角下的尾部风险跨行业传染》,《经济学(季刊)》第1期,第212~227页。
[10]张成思、孙宇辰和阮睿,2023,《经济政策不确定性、企业货币政策感知与实业投资》,《财贸经济》第7期,第75~90页。
[11]周颖刚和肖潇,2022,《汇率波动、生产网络与股市风险——基于中美贸易摩擦背景的分析》,《金融研究》第7期,第115~134页。
[12]Acemoglu, D.,U. Akcigit and W. Kerr, 2016, “Networks and the Macroeconomy: An Empirical Exploration”, NBER Macroeconomics Annual, 30, pp. 273~335.
[13]Acemoglu, D.,V. M. Carvalho, A. Ozdaglar and A. Tahbaz-Salehi, 2012, “The Network Origins of Aggregate Fluctuations”, Econometrica, 80(5), pp. 1977~2016.
[14]Baker, S. R.,N. Bloom and S. J. Davis, 2016, “Measuring Economic Policy Uncertainty”, Quarterly Journal of Economics, 131(4), pp. 1593~1636.
[15]Bhattarai, S.,A. Chatterjee and W. Y. Park, 2020, “Global Spillover Effects of US Uncertainty”, Journal of Monetary Economics, 114, pp. 71~89.
[16]Bloom, N.,2009, “The Impact of Uncertainty Shocks”, Econometrica, 77(3), pp. 623~685.
[17]Carvalho, V. M.,2014, “From Micro to Macro via Production Networks”, Journal of Economic Perspectives, 28(4),pp. 23~48
[18]Choi, S.,2018, “The Impact of US Financial Uncertainty Shocks on Emerging Market Economies: An International Credit Channel”, Open Economies Review, 29(1),pp.89~118.
[19]Di Giovanni, J. and G. Hale, 2022, “Stock Market Spillovers via the Global Production Network: Transmission of U.S. Monetary Policy”, Journal of Finance, 77(6), pp. 3373~3421.
[20]Engle, R. and S. Manganelli, 2004, “CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles”, Journal of Business & Economic Statistics, 22(4), pp. 367~381.
[21]Fogli, A. and F. Perri, 2015, “Macroeconomic Volatility and External Imbalances”,Journal of Monetary Economics, 69, pp. 1~15.
[22]Hu, Z.,A. M. Kutan and P. Sun, 2018, “Is U.S. Economic Policy Uncertainty Priced in China's A-Shares Market? Evidence from Market, Industry, and Individual Stocks”, International Review of Financial Analysis, 57, pp. 207~220.
[23]Huang, Z.,C. Tong, H. Qiu and Y. Shen, 2018, “The Spillover of Macroeconomic Uncertainty between the US and China”, Economics Letters, 171, pp. 123~127.
[24]LeSage, J. and R. K. Pace, 2009, Introduction to Spatial Econometrics, New York: Chapman and Hall/CRC.
[25]Long, J. B. and C. I. Plosser, 1983, “Real Business Cycles”, Journal of Political Economy, 91(1), pp. 39~69.
[26]Ludvigson, S. C.,S. Ma and S. Ng, 2021, “Uncertainty and Business Cycles: Exogenous Impulse or Endogenous Response?”, American Economic Journal: Macroeconomics, 13(4), pp. 369~410.
[27]Martin, J.,I. Mejean, and M. Parenti, 2023, “Relationship Stickiness, International Trade, and Economic Uncertainty”, Review of Economics and Statistics, forthcoming.
[28]Novy, D. and A. M. Taylor, 2020, “Trade and Uncertainty”, Review of Economics and Statistics, 102(4), pp. 749~765.
[29]Ozdagli, A. and M. Weber, 2017, “Monetary Policy through Production Networks: Evidence from the Stock Market”, NBER Working Paper, No. 23424.
[30]Yildirim, Z.,2023, “Spillover Effects of US Uncertainty: Does the Type of US Uncertainty Matter?”, Applied Economics, 55(29), pp. 3365~3389.
[1] 潘彬, 王去非, 金雯雯. 时变视角下非正规借贷利率的货币政策反应研究[J]. 金融研究, 2017, 448(10): 52 -67 .
[2] 祝继高, 李天时, 尤可畅. 房地产价格波动与商业银行贷款损失准备——基于中国城市商业银行的实证研究[J]. 金融研究, 2017, 447(9): 83 -98 .
[3] 康书隆, 余海跃, 刘越飞. 住房公积金、购房信贷与家庭消费——基于中国家庭追踪调查数据的实证研究[J]. 金融研究, 2017, 446(8): 67 -82 .
[4] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[5] 潘越, 肖金利, 戴亦一. 文化多样性与企业创新:基于方言视角的研究[J]. 金融研究, 2017, 448(10): 146 -161 .
[6] 江娇, 刘红忠, 曾剑平. 中国股票网络论坛的信息含量分析段[J]. 金融研究, 2017, 448(10): 178 -192 .
[7] 王茵田, 黄张凯, 陈梦. “不平等条约?”:我国对赌协议的风险因素分析[J]. 金融研究, 2017, 446(8): 117 -128 .
[8] 纪志宏, 曹媛媛. 信用风险溢价还是市场流动性溢价:基于中国信用债定价的实证研究[J]. 金融研究, 2017, 440(2): 1 -10 .
[9] 纪敏, 严宝玉, 李宏瑾. 杠杆率结构、水平和金融稳定——理论分析框架和中国经验[J]. 金融研究, 2017, 440(2): 11 -25 .
[10] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1