Please wait a minute...
金融研究  2024, Vol. 527 Issue (5): 114-131    
  本期目录 | 过刊浏览 | 高级检索 |
金融科技改善你的基金投资了吗?——基于基金销售渠道的分析
钟超杰, 赵淳, 高峰, 王天宇, 王倩
清华大学经济管理学院,北京 100084;
斯坦福大学商学院,美国斯坦福;
北京工商大学经济学院,北京 100048
Does Fintech Improve Your Fund Investment?—Analysis Based on Fund Sales Channels
ZHONG Chaojie, ZHAO Chun, GAO Feng, WANG Tianyu, WANG Qian
School of Economics and Management,Tsinghua University;
Stanford Graduate School of Busines, Stanford University;
School of Economics,Beijing Technology and Business University
下载:  PDF (762KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 互联网独立基金销售渠道(后续简称互联网代销渠道)的崛起,使投资者可以享受更便捷低廉的金融理财服务。但是,这会提高基金投资者的收益吗?本文通过一个简单的模型说明,对于有判断偏误的投资者,互联网代销渠道更便捷的交易途径和更低廉的交易成本,会促使投资者更频繁地交易,出现更多的投资错误,进而导致更差的投资表现。基于同时持有传统渠道和互联网代销渠道公募基金的个人投资者交易数据,本文证实了理论模型的预测:互联网代销渠道低廉的交易成本虽然贡献了年化约0.6%的收益率,但却导致了更多的非理性交易和年化约2.4%的收益损失,最终投资表现更差。实证研究还发现,随着投资者非理性程度的上升,传统渠道和互联网代销渠道的收益率之差逐渐增大。而对于理性的投资者来说,两个渠道的收益率差值并不显著。这些现象普遍存在于不同财富水平、性别和年龄层次的人群中。本研究为理解金融科技对投资者的影响提供了新的经验证据,也说明了投资者教育的重要性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟超杰
赵淳
高峰
王天宇
王倩
关键词:  金融科技  过度交易  互联网基金销售    
Summary:  While Fintech allows investors to enjoy more convenient and cheaper financial services, does it help investors achieve higher returns? This paper uses a simple model to show that, in the case of investors' misjudgment, the low cost and convenience of Fintech channels will prompt them to trade more frequently, make more mistakes, and thus lead to poorer investment performance. This paper provides new empirical evidence for the impact of Fintech on investors and highlights the importance of investor education.
To be specific, this paper provides a theoretical model to illustrate that while Fintech channels reduce transaction costs, they do not necessarily enhance investment returns. In this model, investors with irrational expectations misjudge the market trends, and the reduction in transaction costs leads to their overly frequent trading. These error transactions ultimately result in poorer investment performance. Conversely, higher transaction fees set a higher threshold for trading decisions, thereby mitigating excessive trading. Even though transaction fees themselves reduce returns, they can improve the investment performance of investors with irrational expectations by reducing error transactions.
To test the model's predictions, this paper utilizes a unique micro-level dataset. This dataset originates from a domestic public fund management company and encompasses transaction records of individual clients from 2018 to 2020. This paper categorizes these transactions into two distinct channels according to the types of fund trading institution: Fintech channels and traditional channels. To better address endogeneity problem, this paper further standardizes a transaction data set of individual investors of public fund who hold positions in both traditional channels and Fintech channels.
Empirical analysis confirms the theoretical predictions, revealing a complex relationship between the utilization of Fintech and investment performance. This paper finds that while Fintech channels positively impact investment returns by reducing transaction costs (increasing returns by approximately 0.6%), they also contribute to a surge in irrational trading behaviors. This escalation of irrational trading leads to an approximate loss of 2.4% in returns, ultimately resulting in worse investment performance.
Further analysis reveals an interesting dynamic concerning the degree of investor irrationality. Among investors with different degrees of irrationality, there are significant differences in the impact of channels on returns. For more rational investors, the difference in returns between the two channels is nearly zero, neither statistically nor economically significant. As the degree of irrationality increases, the difference in returns between the two channels gradually widens. For the most irrational investors, the difference in returns between the two channels reaches 0.9% (single interest annualized 10.8%), and is significant at the 1% level. The findings of this paper generally exist in different types of investor groups, including groups with different wealth levels, genders and ages.
This paper provides fresh empirical evidence regarding the impact of Fintech on investors. While the development of Fintech channels has undoubtedly facilitated more convenient and cost-effective investment channels, the seemingly favorable development of Fintech does not help many individual investors improve their investment returns. Additionally, this paper underscores the importance of investor education to reduce irrational behaviors in investment decision-making.
Given these findings, in the case of bounded rationality of investors, blindly pursuing the low-cost and convenience of trading, and increasing trading opportunities may lead investors to make more irrational behaviors which is not conducive to the improvement of social welfare and investor utility. On the contrary, moderate friction can help financial markets function better.
Keywords:  Fintech    Overtrading    Internet Fund Sales
JEL分类号:  D14   G11   G23  
基金资助: * 本文感谢国家自然科学基金项目(72192801、71671101、72103111、72322003)和北京工商大学数字商科与首都发展创新中心项目(SZSK202226)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  王倩,经济学博士,副教授,北京工商大学经济学院,Email:qwbuaa@163.com.   
作者简介:  钟超杰,博士研究生,清华大学经济管理学院,E-mail:zcj23@mails.tsinghua.edu.cn.赵淳,博士研究生,斯坦福大学商学院,E-mail:chunzhao@stanford.edu.高峰,经济学博士,副教授,清华大学经济管理学院,E-mail:gaof@sem.tsinghua.edu.cn.王天宇,经济学博士,副教授,清华大学经济管理学院,E-mail:wangty6@sem.tsinghua.edu.cn.
引用本文:    
钟超杰, 赵淳, 高峰, 王天宇, 王倩. 金融科技改善你的基金投资了吗?——基于基金销售渠道的分析[J]. 金融研究, 2024, 527(5): 114-131.
ZHONG Chaojie, ZHAO Chun, GAO Feng, WANG Tianyu, WANG Qian. Does Fintech Improve Your Fund Investment?—Analysis Based on Fund Sales Channels. Journal of Financial Research, 2024, 527(5): 114-131.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V527/I5/114
[1]高铭、江嘉骏、陈佳和刘玉珍,2017,《谁说女子不如儿郎?——P2P投资行为与过度自信》,《金融研究》第11期,第96~111页。
[2]李春涛、闫续文、宋敏和杨威,2020,《金融科技与企业创新——新三板上市公司的证据》,《中国工业经济》第1期,第81~98页。
[3]李心丹、王冀宁和傅浩,2002,《中国个体证券投资者交易行为的实证研究》,《经济研究》第11期,第54~63+94页。
[4]邱晗、黄益平和纪洋,2018,《金融科技对传统银行行为的影响——基于互联网理财的视角》,《金融研究》第11期,第17~29页。
[5]谭松涛和王亚平,2006,《股民过度交易了么?——基于中国某证券营业厅数据的研究》,《经济研究》第10期,第83~95页。
[6]唐松、伍旭川和祝佳,2020,《数字金融与企业技术创新——结构特征、机制识别与金融监管下的效应差异》,《管理世界》第5期,第52~66+9页。
[7]Barber, B. M., X. Huang, K. J. Ko and T. Odean, 2020, “Leveraging Overconfidence”, Unpublished Working Paper, Available at SSRN 3445660.
[8]Barber, B. M. and T. Odean, 2000, “Trading Is Hazardous to Your Wealth: The Common Stock Investment Performance of Individual Investors”, The Journal of Finance, 55(2), pp.773~806.
[9]Chen, M., Q. Wu and B. Yang, 2019, “How Valuable is FinTech Innovation?”, Review of Financial Studies, 3(5), pp.2062~2106.
[10]D’Acunto, F., N. Prabhala and A. G. Rossi, 2019, “The Promises and Pitfalls of Robo-Advising”, Review of Financial Studies, 32(5), pp.1983~2020.
[11]Goldstein, I., W. Jiang and G. A. Karolyi, 2019, “To FinTech and Beyond”, The Review of Financial Studies, 32 (5), pp.1647~1661.
[12]Hong, C. Y., X. Lu and J. Pan, 2020a, “FinTech Platforms and Mutual Fund Distribution”, ADB-IGF Special Working Paper Series “Fintech to Enable Development, Investment, Financial Inclusion, and Sustainability”.
[13]Hong, C. Y., X. Lu and J. Pan, 2020b, “FinTech Adoption and Household Risk-Taking: From Digital Payments to Platform Investments”, NBER Working Paper No.28063.
[14]Laibson, D., 1997, “Golden Eggs and Hyperbolic Discounting”, The Quarterly Journal of Economics, 112(2), pp.443~478.
[15]Liu, H., C. Peng, W. A. Xiong and W. Xiong, 2022, “Taming the Bias Zoo”, Journal of Financial Economics, 143(2), pp.716~741.
[16]Loos, B., A. Previtero, S. Scheurle and A. Hackethal, 2020, “Robo-Advisers and Investor Behavior”, Unpublished Working Paper, University of Technology of Sidney.
[17]Odean, T., 1998, “Volume, Volatility, Price, and Profit When All Traders Are Above Average”, The Journal of Finance, 53 (6), pp.1887~1934.
[18]Odean, T., 1999, “Do Investors Trade Too Much?”, American Economic Review, 89(5), pp.1279~1298.
[19]Tobin, J., 1978, “A Proposal for International Monetary Reform”, Eastern Economic Journal, 4(3/4), pp.153~159.
[20]Treynor, J. and K. Mazuy, 1966, “Can Mutual Funds Outguess the Market”, Harvard Business Review, 44(4), pp.131~136.
[1] 宋科, 李振, 杨家文. 金融科技与银行行为——基于流动性创造视角[J]. 金融研究, 2023, 512(2): 60-77.
[2] 王修华, 刘锦华. 金融科技能否缓解农村信贷服务的“三角困境”?——基于农村金融机构与金融科技公司合作的视角[J]. 金融研究, 2023, 522(12): 150-168.
[3] 徐照宜, 巩冰, 陈彦名, 成程. 金融科技、数字化转型与企业突破性创新 ——基于全球专利引用复杂网络的分析[J]. 金融研究, 2023, 520(10): 47-65.
[4] 彭俞超, 马思超. 非银行金融科技与上市公司借贷成本——竞争压力还是信息溢出?[J]. 金融研究, 2022, 510(12): 93-111.
[5] 郭晔, 未钟琴, 方颖. 金融科技布局、银行信贷风险与经营绩效——来自商业银行与科技企业战略合作的证据[J]. 金融研究, 2022, 508(10): 20-38.
[6] 盛天翔, 范从来. 金融科技、最优银行业市场结构与小微企业信贷供给[J]. 金融研究, 2020, 480(6): 114-132.
[7] 王靖一. 现金贷果如洪水猛兽?——来自断点回归设计的证据[J]. 金融研究, 2018, 461(11): 153-171.
[8] 邱晗, 黄益平, 纪洋. 金融科技对传统银行行为的影响——基于互联网理财的视角[J]. 金融研究, 2018, 461(11): 17-30.
[1] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[2] 卢洪友, 余锦亮, 张楠. 纵向行政管理结构与地方政府财政支出规模[J]. 金融研究, 2017, 448(10): 35 -51 .
[3] 金宇超, 靳庆鲁, 李晓雪. 资本市场注意力总量是稀缺资源吗?[J]. 金融研究, 2017, 448(10): 162 -177 .
[4] 张晓宇, 徐龙炳. 限售股解禁、资本运作与股价崩盘风险[J]. 金融研究, 2017, 449(11): 158 -174 .
[5] 王攀娜, 罗宏. 放松卖空管制对分析师预测行为的影响——来自中国准自然实验的证据[J]. 金融研究, 2017, 449(11): 191 -206 .
[6] 李少昆. 美国货币政策是全球发展中经济体外汇储备影响因素吗?[J]. 金融研究, 2017, 448(10): 68 -82 .
[7] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[8] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[9] 项后军, 闫玉. 理财产品发展、利率市场化与银行风险承担问题研究[J]. 金融研究, 2017, 448(10): 99 -114 .
[10] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1