Please wait a minute...
金融研究  2024, Vol. 527 Issue (5): 20-38    
  本期目录 | 过刊浏览 | 高级检索 |
识别货币政策操作的多重冲击及其经济效应
林建浩, 陈良源, 黄颖平
中山大学岭南学院,广东广州 510275;
中山大学国际金融学院,广东珠海 519082;
中国人民银行广东省分行,广东广州 510115
The Identification & Economic Effects of Multiple Shocks of Monetary Policy in China
LIN Jianhao, CHEN Liangyuan, Huang Yingping
Lingnan College, Sun Yat-sen University;
International School of Business & Finance, Sun Yat-sen University;
People's Bank of China Guangdong Provincial Branch
下载:  PDF (1382KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于单一利率指标的冲击识别方法,无法刻画货币政策操作产生的多重冲击,不能解释“价格之谜”现象(利率上升时价格水平不降反升)。本文在不同期限同业拆借利率指标体系基础上,引入股票收益率反映市场预期,通过因子旋转和符号约束,识别货币政策操作产生的即时冲击、政策预期冲击与经济预期冲击。其中,即时冲击体现货币政策操作的即期影响,主要驱动隔夜利率变化,能够有效抑制通胀水平,不存在“价格之谜”现象;政策预期冲击体现市场主体对未来货币政策操作的预期,是3到6个月期限利率的主要驱动因素,紧缩的政策预期冲击会降低预期产出和实际产出,也不存在“价格之谜”现象;经济预期冲击体现市场主体对未来经济状况的预期,主要作用于9个月和1年期的利率,乐观的经济预期冲击带来产出预期和通胀预期的上升,进而提升实际产出和通胀水平,是“价格之谜”现象主要成因,证实了货币政策的信息效应,即货币政策操作隐含了央行自身信息优势,会影响公众的预期形成。简而言之,识别货币政策操作的多重冲击(特别是经济预期冲击)有助于解释“价格之谜”,是科学评估货币政策经济效应的重要基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林建浩
陈良源
黄颖平
关键词:  货币政策  多重冲击  即时冲击  预期冲击  信息效应    
Summary:  As one of the most important policies, the key for scientific evaluation of the effectiveness of monetary policy lies in identifying the shocks that monetary policies generate and how the macroeconomic and financial market react. However, when examining the regulatory effect of interest rates on inflation, empirical research has found a price puzzle, that is, contractionary monetary policy actually leads to inflation or price level increase. On the one hand, research is mainly based on a single interest rate indicator, ignoring the market expectation implied by changes in interest rates over different term structures. On the other hand, studying the economic impact of monetary policy can be disrupted by information effects. Therefore, identifying multiple shocks helps to provide a more comprehensive understanding of the impact of China's monetary policy.
This paper designs an identification scheme for monetary policy shocks based on the market expectations and the information effects. First, monetary policy interventions not only adjust current short-term interest rates, but also change market expectations for future policy through longer term interest rates. Thus, we can use interest rate term structure to identify immediacy shocks and expectation shocks to monetary policy. Second, based on the information effect, stock returns are introduced as a constraint to identify policy expectation shocks that are negatively correlated with stock returns which reflect expectations about future monetary policy operations, and economic expectation shocks that are positively correlated with stock returns which reflect expectations about future economic conditions.
Empirical research finds that multiple shocks of monetary policy have different effects on macroeconomic variables. The tightening immediacy shocks lead to a decrease in inflation levels, and there is no price puzzle anymore; The tightening policy shocks can lower market expectations for output, leading to a decrease in real output; Positive economic expectation shocks can lead to an increase in output expectation and inflation expectations, as well as an increase in real output and inflation levels, verifying the expectation channel of monetary policy.
At the same time, there is heterogeneity in the information effect of interest rates with different maturities. As the interest rate term lengthens, the relative importance of immediacy shocks weakens, with the highest relative importance for overnight lending rates being 73.39%, while the relative importance for one-year lending rates is only 3.04%. The relative importance of economic expectation shocks is gradually increasing, with the one-year interbank lending rate having a relative importance as high as 52.32%. The biggest impact of policy expectations shock is the 3-month interbank lending rate, which is as high as 79.02%. Therefore, the public can infer potential shocks through observable changes in interest rates, providing empirical evidence for the central bank to guide public expectations through policy tools such as open market operations and medium-term lending facilitation.
Finally, by comparing the multiple shocks of monetary policy presented in this paper with those of Chen et al. (2018), it is demonstrated from the effects of impulse response and variance decomposition that multiple monetary policy shocks can better explain macroeconomic fluctuations and comprehensively capture the impact of monetary policy shocks. Based on the above research conclusions, we obtain the following two research inspirations:
First, there are differences in the economic effects of monetary policy shocks with different attributes. Identifying multiple monetary policy shocks helps to explain the price puzzle, which is an important basis for scientifically evaluating the economic effects of monetary policy. It provides factual support for precise policy regulation in the future, and plays a key role in maintaining financial market stability and macroeconomic regulation through monetary policy.
Second, multiple shocks of monetary policy are potential factors driving changes in all term interest rates. As the interest rate term increases, the relative importance of immediacy shocks weakens, while the relative importance of economic expectation shocks gradually increases. The central bank can influence long-term or short-term interest rates through open market operations and medium-term lending tools, guiding the public to form reasonable expectations based on observed changes in market interest rates, thereby exerting the expectation management function of monetary policy and improving its effectiveness.
Keywords:  Monetary Policy    Multiple Shocks    Immediacy Shocks    Expectation Shocks    Information Effect
JEL分类号:  E43   E52   E58  
基金资助: * 本文感谢国家社会科学基金重点项目(22AZD121)、国家自然科学基金项目(72273156,72303258)和中国博士后科学基金面上项目(2022M723679)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  陈良源,经济学博士,科研博士后,中山大学国际金融学院,E-mail:chenlyuan@mail.sysu.edu.cn.   
作者简介:  林建浩,经济学博士,教授,中山大学岭南学院,E-mail:linjh3@mail.sysu.edu.cn.黄颖平,金融学硕士,中国人民银行广东省分行,E-mail:alina_yep@163.com
引用本文:    
林建浩, 陈良源, 黄颖平. 识别货币政策操作的多重冲击及其经济效应[J]. 金融研究, 2024, 527(5): 20-38.
LIN Jianhao, CHEN Liangyuan, Huang Yingping. The Identification & Economic Effects of Multiple Shocks of Monetary Policy in China. Journal of Financial Research, 2024, 527(5): 20-38.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V527/I5/20
[1]巴曙松、曾智和王昌耀,2018,《 非传统货币政策的理论、效果及启示》,《国际经济评论》第2期,第146~161页。
[2]董丰、周基航和贾彦东,2023,《资产泡沫与最优货币政策》,《金融研究》第6期,第1~19页。
[3]刘斌,2001,《货币政策冲击的识别及我国货币政策有效性的实证分析》,《金融研究》第7期,第1~9页。
[4]隋建利和刘碧莹,2020,《未预期货币政策非中性的混频识别: 行动与语言的信息效应》,《世界经济》第11期,第176~200页。
[5]孙华妤和马跃,2003,《中国货币政策与股票市场的关系》,《经济研究》第7期,第44~53+91页。
[6]王少林、林建浩和杨燊荣,2015,《中国货币政策与股票市场互动关系的测算——基于FAVAR-BL方法的分析》,《国际金融研究》第5期,第15~25页。
[7]王洋、姜珂和赵宣凯,2023,《中国货币政策价格之谜:信息不足抑或无效识别》,《财贸经济》第2期,第73~87页。
[8]杨海维和侯成琪,2023,《货币政策和银行风险承担:一种非线性关系》,《金融研究》第1期,第57~74页。
[9]易纲,2021,《中国的利率体系与利率市场化改革》,《金融研究》第9期,第1~11页。
[10]易纲和王召,2002,《货币政策与金融资产价格》,《经济研究》第3期,第13~20页。
[11]袁越和胡文杰,2017,《紧缩性货币政策能否抑制股市泡沫?》,《经济研究》第10期,第82~97页。
[12]张成思和陈紫琳,2015,《中央银行公告与资产价格反应——基于双因素模型的实证分析》,《金融评论》第1期,第10~21+124页。
[13]张成思、唐火青和陈贞竹,2022,《货币政策冲击对实体企业投资选择影响的“宿醉效应”》,《金融研究》第9期,第1~19页。
[14]赵文胜和张屹山,2012,《货币政策冲击与人民币汇率动态》,《金融研究》第8期,第1~15页。
[15]钟山、林木材和洪智武,2023,《金融网络视角下的银行间市场基准利率体系与货币政策冲击传导》,《金融研究》第6期,第20~37页。
[16]Andrade, P. and F. Ferroni, 2021, “Delphic and Odyssean Monetary Policy Shocks: Evidence from the Euro Area”, Journal of Monetary Economics, 117, pp. 816~832.
[17]Barakchian, S. M. and C. Crowe, 2013, “Monetary Policy Matters: Evidence from New Shocks Data”, Journal of Monetary Economics, 60(8), pp. 950~966.
[18]Bauer, M. and E. T. Swanson, 2023, “An Alternative Explanation for the Fed Information Effect”, American Economic Review, 113(3), pp. 664~700.
[19]Bjørnland, H. C. and K. Leitemo, 2009, “Identifying the Interdependence Between US Monetary Policy and the Stock Market”, Journal of Monetary Economics, 56(2), pp. 275~282.
[20]Campbell, J. R.,C. L. Evans ,J.Fisher and A.Justiniano, 2012, “Macroeconomic Effects of Federal Reserve Forward Guidance”, Brookings Papers on Economic Activity, pp. 1~80.
[21]Chen, K., J. Ren and T. Zha, 2018, “The Nexus of Monetary Policy and Shadow Banking in China”, American Economic Review, 108(12), pp. 3891~3936.
[22]Christiano, L. J., M. Eichenbaum and C. Evans, 2005, “Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy”, Journal of Political Economy, 113(1), pp. 1~45.
[23]Cieslak, A. and A. Schrimpf, 2019, “Non-Monetary News in Central Bank Communication”, Journal of International Economics, 118, pp. 293~315.
[24]Cochrane, J. H. and M. Piazzesi, 2002, “The Fed and Interest Rates-A High-Frequency Identification”, American Economic Review, 92(2), pp. 90~95.
[25]Faust, J., E. T. Swanson and J. H. Wright, 2004, “Identifying VARS Based on High Frequency Futures Data”, Journal of Monetary Economics, 51(6), pp. 1107~1131.
[26]Gürkaynak, R. S., B. Sack and E. T. Swanson, 2005, “Do Actions Speak Louder Than Words? The Response of Asset Prices to Monetary Policy Actions and Statements”, International Journal of Central Banking, 1(1), pp. 55~93.
[27]Jarociński, M. and P. Karadi, 2020, “Deconstructing Monetary Policy Surprises—the Role of Information Shocks”, American Economic Journal: Macroeconomics, 12(2), pp.1~43.
[28]Leombroni, M., A. Vedolin,G. Venter and P. Whelan,2021, “Central Bank Communication and the Yield Curve”, Journal of Financial Economics, 141(3), pp. 860~880.
[29]Nakamura, E. and J. Steinsson, 2018, “High-Frequency Identification of Monetary Non-Neutrality: The Information Effect”, The Quarterly Journal of Economics, 133(3), pp. 1283~1330.
[30]Romer, C. D. and D. H. Romer, 2000, “Federal Reserve Information and the Behavior of Interest Rates”, American Economic Review, 2000, 90(3), pp. 429~457.
[31]Sargent, T. J. and N. Wallace, 1975, “‘Rational’ Expectations, the Optimal Monetary Instrument, and the Optimal Money Supply Rule”, Journal of Political Economy, 83, pp. 241~254.
[32]Sims, C. A., 1992, “Interpreting the Macroeconomic Time Series Facts: The Effects of Monetary Policy”, European Economic Review, 36(5), pp. 975~1000.
[1] 陈国进, 丁赛杰, 赵向琴. 绿色结构性货币政策、政策预期与经济绿色转型[J]. 金融研究, 2024, 526(4): 1-19.
[2] 王辉, 朱家雲, 胡诣聪. 央行预期引导可以降低银行系统性金融风险吗?——基于市场解读偏离的视角[J]. 金融研究, 2023, 519(9): 1-19.
[3] 刘晓蕾, 刘俏, 李劢, 朱妮. 债券违约的区域性影响 ——信息效应与逃离效应分析[J]. 金融研究, 2023, 518(8): 74-93.
[4] 庄子罐, 韩恺明, 刘鼎铭, 王熙. 资产价格、预期冲击与中国宏观经济波动[J]. 金融研究, 2023, 518(8): 1-18.
[5] 梅冬州, 宋佳馨, 马振宇. 美联储货币政策紧缩的跨国异质性影响研究[J]. 金融研究, 2023, 517(7): 1-20.
[6] 董丰, 周基航, 贾彦东. 资产泡沫与最优货币政策[J]. 金融研究, 2023, 516(6): 1-19.
[7] 钟山, 林木材, 洪智武. 金融网络视角下的银行间市场基准利率体系与货币政策冲击传导[J]. 金融研究, 2023, 516(6): 20-37.
[8] 郭杰, 饶含. 商业银行债券融资与货币政策传导[J]. 金融研究, 2023, 515(5): 38-57.
[9] 翟光宇, 王超, 姜美君. 人口老龄化、货币政策效果及传导渠道[J]. 金融研究, 2023, 514(4): 1-18.
[10] 董文华, 谭小芬, 朱菲菲, 李兴申. 美国货币政策会影响其他经济体贷款者的风险承担吗?——基于全球辛迪加贷款市场的研究[J]. 金融研究, 2023, 513(3): 57-73.
[11] 杨海维, 侯成琪. 货币政策和银行风险承担:一种非线性关系[J]. 金融研究, 2023, 511(1): 57-74.
[12] 张成思, 唐火青, 陈贞竹. 货币政策冲击对实体企业投资选择影响的“宿醉效应”[J]. 金融研究, 2022, 507(9): 1-19.
[13] 吴迪, 张楚然, 侯成琪. 住房价格、金融稳定与宏观审慎政策[J]. 金融研究, 2022, 505(7): 57-75.
[14] 刘哲希, 郭俊杰, 谭涵予, 陈彦斌. 货币政策能够兼顾“稳增长”与“稳杠杆”双重目标吗?——基于不同杠杆环境的比较[J]. 金融研究, 2022, 505(7): 20-37.
[15] 郭杰, 饶含. 土地资产价格波动与经济中的流动性供给——基于以地融资视角的研究[J]. 金融研究, 2022, 505(7): 76-93.
[1] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[2] 卢洪友, 余锦亮, 张楠. 纵向行政管理结构与地方政府财政支出规模[J]. 金融研究, 2017, 448(10): 35 -51 .
[3] 李万福, 杜静, 张怀. 创新补助究竟有没有激励企业创新自主投资——来自中国上市公司的新证据[J]. 金融研究, 2017, 448(10): 130 -145 .
[4] 金宇超, 靳庆鲁, 李晓雪. 资本市场注意力总量是稀缺资源吗?[J]. 金融研究, 2017, 448(10): 162 -177 .
[5] 张靖佳, 孙浦阳, 古芳. 欧洲量化宽松政策对中国企业出口影响——一个汇率网状溢出效应视角[J]. 金融研究, 2017, 447(9): 18 -34 .
[6] 李春涛, 刘贝贝, 周鹏. 卖空与信息披露:融券准自然实验的证据[J]. 金融研究, 2017, 447(9): 130 -145 .
[7] 张晓宇, 徐龙炳. 限售股解禁、资本运作与股价崩盘风险[J]. 金融研究, 2017, 449(11): 158 -174 .
[8] 祝继高, 李天时, 尤可畅. 房地产价格波动与商业银行贷款损失准备——基于中国城市商业银行的实证研究[J]. 金融研究, 2017, 447(9): 83 -98 .
[9] 纪敏, 严宝玉, 李宏瑾. 杠杆率结构、水平和金融稳定——理论分析框架和中国经验[J]. 金融研究, 2017, 440(2): 11 -25 .
[10] 吴超鹏, 张媛. 风险投资对上市公司股利政策影响的实证研究[J]. 金融研究, 2017, 447(9): 178 -191 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1