Please wait a minute...
金融研究  2022, Vol. 509 Issue (11): 21-39    
  本期目录 | 过刊浏览 | 高级检索 |
住房耐用品、土地市场分割与货币失踪之谜
刘建建, 王忏, 赵扶扬, 龚六堂
山东财经大学金融学院,山东济南 250014;
中央财经大学金融学院/经济学院,北京 100081;
北京工商大学国际经管学院,北京 100048;
北京大学数量经济与数理金融教育部重点实验室,北京 100871
Houses as Durable Goods, Land Market Division and the Missing Money Puzzle
LIU Jianjian, WANG Chan, ZHAO Fuyang, GONG Liutang
School of Finance, Shandong University of Finance and Economics;
School of Finance/School of Economics, Central University of Finance and Economics;
School of International Economics and Management, Beijing Technology and Business University;
LMEQF Peking University
下载:  PDF (1988KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 2008年国际金融危机后,我国M2供给增幅远高于CPI上涨幅度,这一现象被学界称为“货币失踪之谜”。本文构建了一个两部门新凯恩斯货币模型来研究这一问题。当外部需求下降后,央行降低利率以提振经济,房地产部门和非房地产部门同时扩张。由于住房属于耐用消费品,具有一定的金融属性,其需求对利率变化更敏感。利率下降后,住房需求相对普通消费品需求上升更多。因为存在土地市场分割,商住用地供给弹性较小,住房需求上升导致商住用地价格上升较多,地价上涨提升了房地产企业的抵押融资能力,房地产部门进一步扩张。普通消费品需求对利率反应小,需求较弱导致工业用地价格上升幅度较小,非房地产部门抵押融资能力小幅提升。因此,非房地产部门产出和CPI只温和扩张。Ramsey最优货币政策模拟表明,只有实现了房地产部门与非房地产部门均衡发展,才能实现社会福利最大化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘建建
王忏
赵扶扬
龚六堂
关键词:  住房耐用品  房价  土地市场分割  货币失踪之谜  Ramsey货币政策    
Summary:  The 2008 financial crisis caused a drastic decline in China's exports and slowed its economic growth. In response, China adopted stimulus plan to stimulate the economy. However, the resulting increase in money supply (M2) did not cause an increase in inflation, which is called the missing money puzzle. This puzzle was caused by the boom in the real estate sector and a sharp increase in housing prices. There were variations in land prices as well, as the prices of commercial and residential land rose sharply while the prices of industrial land remained relatively stable. This study explains the above phenomena in a unified framework.
We build a two-sector dynamic stochastic general equilibrium model comprising the real estate and non-real estate sectors to explain the missing money puzzle. Both sectors use labor, capital and land as material inputs of production. The entrepreneurs of both sectors face financial frictions, that is, they use land and capital as collateral to borrow from households. Land is provided by the local government. There is a land market division: an entrepreneur in the housing sector uses commercial and residential land to produce housing, while an entrepreneur in the non-housing sector uses industrial land to produce goods for consumption.
The demand for housing, as a durable good, is more sensitive to changes in interest rates because of its near-constant shadow value and almost infinite elasticity of substitution. Therefore, when the interest rate declines, the demand for housing increases more than that of non-housing goods, and housing prices rise sharply. Furthermore, the increase in housing demand encourages real estate entrepreneurs to increase production and the material inputs of production, including land. As land of different types or in different markets cannot be transformed, commercial land prices rise significantly because of the fixed land supply. High land prices increase the collateral value of land and relax the borrowing constraints of real estate entrepreneurs, enabling them to gain more capital to increase production, which leads to a further expansion in the real estate sector. However, non-housing goods are less sensitive to changes in interest rates, so the demand for non-housing goods and the price of industrial land increase slowly, thereby limiting the borrowing capacity of entrepreneurs in the non-real estate sector. This leads to a modest rise in the non-real estate sector output and the Consumer Price Index.
We also compute the optimal Ramsey policy and compare it with the benchmark model. The monetary policy should be stable and limit the increase in the housing sector to achieve optimal social welfare and balanced development in the housing and non-housing sectors.
Based on the study findings, we make the following policy recommendations. Monetary policy tools should play the dual functions of aggregation and structure as houses are assets for living in, not for speculation. The monetary policy should maintain stability, and structural monetary policy instruments should be improved. It is also necessary to increase construction for residential purposes and affordable housing and develop the long-term rental market. Moreover, a prudent management system for real estate should be implemented to achieve balanced development of the housing and non-housing sectors.
Keywords:  House as Durable Goods    House Price    Land Market Division    Missing Money Puzzle    Ramsey Monetary Policy
JEL分类号:  C51   E40   E52  
基金资助: * 本文感谢国家社会科学青年基金项目(22CJY073)、国家社科基金重大项目(19ZDA069)、“中央财经大学科创新团队支持计划”、“中央财经大学标志性科研成果培育项目”的资助,感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  王 忏,经济学博士,副教授,中央财经大学金融学院,E-mail:wangchanist@126.com.   
作者简介:  刘建建,经济学博士,博士后,山东财经大学金融学院,E-mail:ljjpku24@163.com.
赵扶扬,经济学博士,讲师,中央财经大学经济学院,E-mail:fyzhao@cufe.edu.cn.
龚六堂,数学博士,教授,北京工商大学国际经管学院,北京大学数量经济与数理金融教育部重点实验室,E-mail:ltgong@gsm.pku.edu.cn.
引用本文:    
刘建建, 王忏, 赵扶扬, 龚六堂. 住房耐用品、土地市场分割与货币失踪之谜[J]. 金融研究, 2022, 509(11): 21-39.
LIU Jianjian, WANG Chan, ZHAO Fuyang, GONG Liutang. Houses as Durable Goods, Land Market Division and the Missing Money Puzzle. Journal of Financial Research, 2022, 509(11): 21-39.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2022/V509/I11/21
[1] 陈彦斌、郭豫媚和陈伟泽,2015,《2008年金融危机后中国货币数量论失效研究》,《经济研究》第4期,第21~35页。
[2] 高然和龚六堂,2017,《土地财政、房地产需求冲击与经济波动》,《金融研究》第4期,第33~45页。
[3] 李斌,2004,《经济发展、结构变化与“货币消失”》,《经济研究》第6 期,第24~32页。
[4] 李斌,2010,《从流动性过剩(不足)到结构性通胀(通缩)》,《金融研究》第4 期,第50~63页。
[5] 彭方平、展凯和李琴,2008,《流动性过剩与央行货币政策有效性》,《管理世界》第5期,第30~37页。
[6] 仝冰,2017, 《混频数据、投资冲击与中国宏观经济波动》,《经济研究》第 6 期,第60~76页。
[7] 王弟海、管文杰和赵占波,2015,《土地和住房供给对房价变动和经济增长的影响———兼论我国房价居高不下持续增长的原因》,《金融研究》第1期,第50~67页。
[8] 王频和侯成琪,2017,《预期冲击、房价波动与经济波动》,《经济研究》第4期,第48~63页。
[9] 张杰平和刘晓光,2016,《价格结构性上涨:货币、物价和房价》,《经济评论》第6期,第55~69页。
[10] 张勇,2015,《热钱流入、外汇冲销与汇率干预—基于资本管制和央行资产负债表的DSGE分析》,《经济研究》第7期,第116~130页。
[11] 赵扶扬、王忏和龚六堂,2017,《土地财政与中国经济波动》,《经济研究》第12期,第46~61页。
[12] 赵扶扬、王忏、龚六堂和王鹏飞,2020,《土地市场分割、房地产市场与中国经济的“脱实向虚”》,工作论文。
[13] Barsky, R., L. H. Christopher, and M. Kimball, 2007, “Sticky Price Models and Durable Goods.” American Economic Review,97(3): 984~998.
[14] Chang, C., Z. Liu, and M. Spiegel, 2015, “Capital Controls and Optimal Chinese Monetary Policy.” Journal of Monetary Economics,74: 1~15.
[15] Chen, B., and S. Liao, 2014, “Capital, Credit Constraints and The Comovement Between Consumer Durables and Nondurables”. Journal of Economic Dynamics and Control, 39: 127~139.
[16] Chen, T., L. Liu, W. Xiong, and L. Zhou, 2017, “Real Estate Boom and Corporate Misallocation of Capital in China.” Working Paper.
[17] Chen, K., J. Ren, and T. Zha, 2018, “The Nexus of Monetary Policy and Shadow Banking in China.”. American Economic Review, 108 (12): 3891~3936.
[18] Chen, K. and Y, Wen, 2017, “The Great Housing Boom of China.” American Economic Journal: Macroeconomics, 9(2): 73~114.
[19] Christopher, E., and L. Andrew, 2006, “Optimal Monetary Policy with Durable Consumption Goods.” Journal of Monetary Economics, 53: 1341~1359.
[20] Fang, H., Q. Gu, W. Xiong, and L. Zhou, 2016, “Demystifying The Chinese Housing Boom.” NBER Macroeconomics Annual, 30: 105~166.
[21] Iacoviello, M., 2005, “House Prices, Borrowing Constraints, and Monetary Policy in the Business Cycle.” American Economic Review, 95 (3):739~764.
[22] Hsieh, C., and E. Moeretti, 2019, “Housing Constraints and Spatial Misallocation”. American Economic Journal: Macroeconomics, 11: 1~39.
[23] Lambertini, L., M. Caterina, and T. Maria, 2013, “Leaning Against Boom-bust Cycles in Credit and Housing Prices.” Journal of Economic Dynamics and Control, 37: 1500~1522.
[24] Liu, Z., P. Wang, and T. Zha, 2013, “Land-price Dynamics and Macroeconomic Fluctuations.” Econometrica, 81 (3): 1147~1184.
[25] Mankiw, N., J. Rotemberg, and L. Summers, 1985, “Intertemporal Substitution in Macroeconomics.” The Quarterly Journal of Economics, 100(1): 225~251.
[26] Notarpietro, A. and S. Siviero, 2015, “Optimal Monetary Policy Rules and House Prices: The Role of Financial Frictions.” Journal of Money Credit& Banking,47( S1): 383~410.
[1] 吴迪, 张楚然, 侯成琪. 住房价格、金融稳定与宏观审慎政策[J]. 金融研究, 2022, 505(7): 57-75.
[2] 易行健, 苏欣, 周聪, 杨碧云. 房价预期与城镇居民家庭股市参与——理论探讨与微观经验证据[J]. 金融研究, 2022, 502(4): 151-169.
[3] 陈金至, 温兴春, 宋鹭. 收入差距、信贷约束与房价变动[J]. 金融研究, 2021, 497(11): 79-96.
[4] 梅冬州, 温兴春, 王思卿. 房价调控、地方政府债务与宏观经济波动[J]. 金融研究, 2021, 487(1): 31-50.
[5] 刘建丰, 于雪, 彭俞超, 许志伟. 房产税对宏观经济的影响效应研究[J]. 金融研究, 2020, 482(8): 34-53.
[6] 宋弘, 吴茂华. 高房价是否导致了区域高技能人力资本流出?[J]. 金融研究, 2020, 477(3): 77-95.
[7] 赵文哲, 刘思嘉, 史宇鹏. 干得好不如嫁得好?——房价变动与居民婚姻观念研究[J]. 金融研究, 2019, 471(9): 94-111.
[8] 周广肃, 王雅琦. 住房价格、房屋购买与中国家庭杠杆率[J]. 金融研究, 2019, 468(6): 1-19.
[9] 司登奎, 葛新宇, 曾涛, 李小林. 房价波动、金融稳定与最优宏观审慎政策[J]. 金融研究, 2019, 473(11): 38-56.
[10] 张巍, 许家云, 杨竺松. 房价、工资与资源配置效率——基于微观家庭数据的实证分析[J]. 金融研究, 2018, 458(8): 69-84.
[11] 吴雨, 李洁, 尹志超. 房价上涨对P2P网络借贷成本的影响分析——来自“人人贷”的经验证据[J]. 金融研究, 2018, 461(11): 85-97.
[12] 魏玮, 陈杰. 加杠杆是否一定会成为房价上涨的助推器?——来自省际面板门槛模型的证据[J]. 金融研究, 2017, 450(12): 48-63.
[13] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34-48.
[14] 龙少波, 陈璋, 胡国良. 货币政策、房价波动对居民消费影响的路径研究[J]. 金融研究, 2016, 432(6): 52-66.
[15] 刘行, 建蕾, 梁娟. 房价波动、抵押资产价值与企业风险承担[J]. 金融研究, 2016, 429(3): 107-123.
[1] 张牧扬, 潘妍, 余泳泽. 社会信用、刚兑信仰与地方政府隐性债务[J]. 金融研究, 2022, 508(10): 1 -19 .
[2] 郭晔, 未钟琴, 方颖. 金融科技布局、银行信贷风险与经营绩效——来自商业银行与科技企业战略合作的证据[J]. 金融研究, 2022, 508(10): 20 -38 .
[3] 潘敏, 刘红艳, 程子帅. 极端气候对商业银行风险承担的影响——来自中国地方性商业银行的经验证据[J]. 金融研究, 2022, 508(10): 39 -57 .
[4] 祝梓翔, 高然. 通胀—增长权衡和中国菲利普斯曲线的平坦化[J]. 金融研究, 2022, 509(11): 1 -20 .
[5] 邢秉昆. 碳减排约束下中国工业企业信用评级[J]. 金融研究, 2022, 509(11): 77 -97 .
[6] 徐佳, 李冠华, 齐天翔. 中国家庭偿债能力:衡量与影响因素[J]. 金融研究, 2022, 509(11): 98 -116 .
[7] 李孟哲, 麻志明, 吴联生. 上市公司数量与非上市公司创新[J]. 金融研究, 2022, 509(11): 171 -188 .
[8] 朱永华, 张一林, 林毅夫. 赶超战略与大银行垄断——基于新结构经济学的视角[J]. 金融研究, 2022, 509(11): 40 -57 .
[9] 高翔, 张敏, 刘啟仁. 工业机器人应用促进了“两业融合”发展吗?——来自中国制造企业投入服务化的证据[J]. 金融研究, 2022, 509(11): 58 -76 .
[10] 吴锟, 吴卫星, 王沈南. 金融教育是有效的吗?[J]. 金融研究, 2022, 509(11): 117 -135 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1