Please wait a minute...
金融研究  2025, Vol. 540 Issue (6): 114-132    
  本期目录 | 过刊浏览 | 高级检索 |
政府白名单的信贷引导效应研究
曹廷求, 庞念伟
山东大学经济学院,山东济南 250100
The Credit Guidance Effect of Government Whitelist
CAO Tingqiu, PANG Nianwei
School of Economics, Shandong University
下载:  PDF (746KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 政府信息赋能是优化资源配置的重要手段,本文以信贷市场为切入点,研究政府白名单这一认证型信息赋能信贷市场的效应及机制。将2021年东部某省公布省级“专精特新”中小企业名单作为一项准自然实验,基于银行—企业配对数据构建双重差分模型,研究发现政府白名单具有显著的信贷引导效应:有助于此前没有贷款关系的银行和企业建立信贷关系,在广延边际上产生作用;使银行增加对存量客户的信贷投放,降低对存量客户的利率水平,在集约边际上产生作用。机制分析发现,白名单会提高银行的贷前风险识别能力,缓解逆向选择问题。本研究对优化宏观经济治理体系,提高信贷资源配置效率具有一定的现实意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹廷求
庞念伟
关键词:  认证型信息  白名单  信贷引导    
Summary:  Information asymmetry remains a key obstacle to financing for small and medium-sized enterprises (SMEs), especially those in the technology sector. It also presents a major challenge to improving the efficiency of credit allocation. In recent years, government-led information empowerment has emerged as an important tool to reduce the information asymmetry between banks and firms. By enhancing the disclosure of firm-related information, such as business registrations and tax records, government agencies help banks better assess the operational performance of loan-seeking enterprises. While prior research has recognized the benefits of information empowerment in credit markets, it has largely focused on mirror-type information — that is, data directly reflecting observable facts about firms. In contrast, certification-type information—which reflects government assessments based on objective data—has received far less attention. This paper explores whether certification-type information can guide credit allocation and investigates the mechanisms behind its effects.
Drawing on the theory of information asymmetry, this paper first explains how certification-type information helps bridge information gaps between banks and firms. According to signaling theory, third parties with informational advantages can send credible signals to less-informed parties, thereby reducing asymmetries and improving the efficiency of resource allocation. When banks lack direct insights into firm quality, they may rely on government endorsements to identify high-quality borrowers. In this context, certification-type information serves as a quality signal to the market, helping banks distinguish high-quality firms, reducing information asymmetry, and increasing firms' attractiveness as loan recipients. Specifically, when information asymmetry is severe and credit rationing occurs, certification-type signals can ease the rationing and improve firms' access to credit. In less asymmetric situations, such signals may prompt banks to expand credit scale and lower interest rates for certified firms.
This study uses the specialized, high-end and innovation-driven SMEs whitelist issued by a province in eastern China as a proxy for certification-type information. Leveraging 1.8 million bank-firm matched loan records from the province, a difference-in-differences model is employed to evaluate the credit-guiding effect of the whitelist and its underlying mechanism. Results show that following the release of the whitelist, banks increased lending to listed firms by 6% relative to non-listed firms—demonstrating a notable guiding effect. This effect appears on both the extensive margin—encouraging new credit relationships between previously unconnected banks and firms—and the intensive margin—leading banks to increase credit to existing clients. Further analysis reveals that the primary channel through which the whitelist operates is by improving banks' ability to assess pre-loan risk and reducing adverse selection. However, its effectiveness in curbing moral hazard is limited due to weak punishing consequences for firms that fail to meet ongoing criteria.
These findings offer important policy implications for improving the efficiency of credit allocation. First, government-driven information empowerment can help correct market failures and reduce friction, with certification-type information effectively channeling financial resources toward sectors aligned with high-quality development goals. Second, the success of such whitelists depends on the government's capacity for evaluation and access to reliable data—making it essential to enhance the rigor, professionalism, and credibility of the certification process. Third, dynamic management of the whitelist should be strengthened. A dual-track system combining a “whitelist” with a “negative list”, supported by annual reviews and real-time adjustments, would improve post-certification constraining function and governance.
This paper makes three key contributions. First, by utilizing large-scale, firm-level loan data, it provides a novel analysis of the economic impact of certification-type information from both the extensive and intensive margins, thereby enriching the literature on the role of government information in credit markets. Second, by examining the government whitelist as a representative form of certification-type information, it offers empirical evidence for a mechanism distinct from that of mirror-type information, helping to address a notable gap in existing research. Finally, the paper generates practical policy implications for strengthening macroeconomic governance and enhancing the efficiency of credit resource allocation.
Keywords:  Certification-type Information    Whitelist    Credit Guidance
JEL分类号:  E40   E51   G21  
基金资助: *本文感谢国家社会科学基金重大项目“地方金融运行动态监测及系统性风险预警研究”(19ZDA091)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  庞念伟,博士研究生,山东大学经济学院,E-mail:pangnianwei@sina.com.   
作者简介:  曹廷求,管理学博士,教授,山东大学经济学院,E-mail:tqcao@126.com.
引用本文:    
曹廷求, 庞念伟. 政府白名单的信贷引导效应研究[J]. 金融研究, 2025, 540(6): 114-132.
CAO Tingqiu, PANG Nianwei. The Credit Guidance Effect of Government Whitelist. Journal of Financial Research, 2025, 540(6): 114-132.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V540/I6/114
[1] 成肖,2024,《高新技术企业认定、企业创新信号释放与研发二元边际》,《统计与决策》第4期,第168~173页。
[2] 何昊楠、彭玲玲和李劢等,2025,《金融基础设施数字化建设与普惠金融发展——基于应收账款融资的微观证据》,《金融研究》第3期,第94~112页。
[3] 黄先海和宋学印,2021,《赋能型政府——新一代政府和市场关系的理论建构》,《管理世界》第11期,第41~55页。
[4] 黄卓、陶云清和王帅,2023,《社会信用环境改善降低了企业违规吗?——来自“中国社会信用体系建设”的证据》,《金融研究》第5期,第96~114页。
[5] 李莉、高洪利和陈靖涵,2015,《中国高科技企业信贷融资的信号博弈分析》,《经济研究》第6期,第162~174页。
[6] 刘冲和刘莉亚,2022,《财政金融政策的协同效应——基于小微贷款利息收入增值税减免的研究》,《中国社会科学》第9期,第67~84页。
[7] 卢盛峰、董如玉和叶初升,2021,《“一带一路”倡议促进了中国高质量出口吗——来自微观企业的证据》,《中国工业经济》第3期,第80~98页。
[8] 潘妍和余泳泽,2023,《社会信用体系建设促进了农户创业吗?——基于失信信息公开视角》,《金融研究》第12期,第169~187页。
[9] 钱先航、曹廷求和李维安,2011,《晋升压力、官员任期与城市商业银行的贷款行为》,《经济研究》第12期,第72~85页。
[10] 佘楷文、申宇和赵绍阳,2024,《大数据对银行信贷行为的影响——来自数字社会信用平台的证据》,《经济研究》第3期,第147~165页。
[11] 王茂斌、叶涛和孔东民,2024,《绿色制造与企业环境信息披露——基于中国绿色工厂创建的政策实验》,《经济研究》第2期,第116~134页。
[12] 吴翌琳、张旻和于鸿君,2024,《融资方式与企业二元创新路径选择——基于技术创新与非技术创新视角》,《金融研究》第1期,第38~55页。
[13] 杨龙见、吴斌珍和李世刚等,2021,《“以税增信”是否有助于小微企业贷款?——来自“银税互动”政策的证据》,《经济研究》第7期,第96~112页。
[14] 张琦、郑瑶和孔东民,2019,《地区环境治理压力,高管经历与企业环保投资——一项基于〈环境空气质量标准(2012)〉的准自然实验》,《经济研究》第6期,第183~198页。
[15] 张跃军和刘文丽,2025,《政府补贴如何促进新能源企业技术创新?》,《管理科学学报》第2期,第1~14页。
[16] Akerlof, G. A., 1970, “The Market for ‘Lemons’: Quality Uncertainty and the Market Mechanism”, Market Failure or Success, 66, pp. 488~500.
[17] Bellucci, A., Borisov, A. and Giombini, G., 2023, “Information Asymmetry, External Certification, and the Cost of Bank Debt”, Journal of Corporate Finance, 78, p. 102336.
[18] Carletti, E., Cerasi, V. and Daltung, S., 2007, “Multiple-bank Lending: Diversification and Free-riding in Monitoring”, Journal of Financial Intermediation, 16(3), pp. 425~451.
[19] Degryse, H., De Jonghe, O. and Jakovljevic', S., 2019, “Identifying Credit Supply Shocks with Bank-Firm Data: Methods and Applications”, Journal of Financial Intermediation, 40, p. 100813.
[20] Guo, D., Guo, Y. and Jiang, K., 2022, “Government R&D Support and Firms' Access to External Financing: Funding Effects, Certification Effects, or Both?”, Technovation, 115, p. 102469.
[21] Hottenrott, H., Lopes-Bento, C. and Veugelers, R., 2017, “Direct and Cross Scheme Effects in a Research and Development Subsidy Program”, Research Policy, 46(6), pp. 1118~1132.
[22] Kleer, R., 2010, “Government R&D Subsidies as a Signal for Private Investors”, Research Policy, 39(10), pp. 1361~1374.
[23] Lerner, J., 2002, “When Bureaucrats Meet Entrepreneurs: The Design of Effective Public Venture Capital Programmes”, The Economic Journal, 112(477), pp. F73~F84.
[24] Li, L., Chen, J. and Gao, H., 2019, “The Certification Effect of Government R&D Subsidies on Innovative Entrepreneurial Firms' Access to Bank Finance: Evidence from China”, Small Business Economics, 52(1), pp. 241~259.
[25] Martí, J. and Quas, A., 2018, “A Beacon in the Night: Government Certification of SMEs Towards Banks”, Small Business Economics, 50, pp. 397~413.
[26] Meuleman, M. and De Maeseneire, W., 2012, “Do R&D Subsidies Affect SMEs' Access to External Financing?”, Research Policy, 41(3), pp. 580~591.
[27] Stiglitz, J. E. and Weiss, A., 1981, “Credit Rationing in Markets with Imperfect Information”, The American Economic Review, 71(3), pp. 393~410.
[28] Waller, C. J. and Lewarne, S., 1994, “An Expository Model of Credit Rationing”, Journal of Macroeconomics, 16(3), pp. 539~545.
[1] 刘建建, 王忏, 赵扶扬, 龚六堂. 住房耐用品、土地市场分割与货币失踪之谜[J]. 金融研究, 2022, 509(11): 21-39.
[2] 郝大鹏, 王博, 李力. 美联储政策变化、国际资本流动与宏观经济波动[J]. 金融研究, 2020, 481(7): 38-56.
[3] 邱晗, 黄益平, 纪洋. 金融科技对传统银行行为的影响——基于互联网理财的视角[J]. 金融研究, 2018, 461(11): 17-30.
[4] 沈永建, 徐巍, 蒋德权. 信贷管制、隐性契约与贷款利率变相市场化——现象与解释[J]. 金融研究, 2018, 457(7): 49-68.
[5] 项后军, 闫玉. 理财产品发展、利率市场化与银行风险承担问题研究[J]. 金融研究, 2017, 448(10): 99-114.
[6] 谭政勋, 李丽芳. 中国商业银行的风险承担与效率——货币政策视角[J]. 金融研究, 2016, 432(6): 112-126.
[1] 莫万贵, 袁佳, 魏磊, 高海燕. 中国结构性通缩中的周期性与结构性问题[J]. 金融研究, 2019, 465(3): 37 -52 .
[2] 郭彪, 刘普阳, 姜圆. 卖空限制与收益可预测性——A股融资融券制度的证据[J]. 金融研究, 2020, 482(8): 169 -187 .
[3] 易纲. 中国的利率体系与利率市场化改革[J]. 金融研究, 2021, 495(9): 1 -11 .
[4] 徐照宜, 巩冰, 陈彦名, 成程. 金融科技、数字化转型与企业突破性创新 ——基于全球专利引用复杂网络的分析[J]. 金融研究, 2023, 520(10): 47 -65 .
[5] 徐枫, 吕纤, 郑耀东. 银行竞争、卖空机制与企业融资约束[J]. 金融研究, 2024, 528(6): 132 -150 .
[6] 张鹏龙, 胡羽珊. 被忽略的半个世界:中国产品出口“零贸易”研究[J]. 金融研究, 2025, 535(1): 58 -76 .
[7] 周颖刚, 潘骏, 刘岩. 商业银行股权结构特征与银行系统脆弱性水平[J]. 金融研究, 2025, 536(2): 39 -57 .
[8] 曹伟, 高洁, 曾利飞. 人民币汇率、创新效应与制造业企业杠杆率[J]. 金融研究, 2025, 537(3): 21 -39 .
[9] 刘磊, 王辉. 中国地方财政支出乘数研究[J]. 金融研究, 2025, 537(3): 188 -206 .
[10] 李志冰, 杨光艺, 冯永昌, 景亮. Fama-French五因子模型在中国股票市场的实证检验[J]. 金融研究, 2017, 444(6): 191 -206 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1