Please wait a minute...
金融研究  2025, Vol. 537 Issue (3): 76-93    
  本期目录 | 过刊浏览 | 高级检索 |
绿色企业的贷款利率会更低吗?——基于商业银行贷款定价行为的视角
张甜, 刘一鸣
山东管理学院经贸学院,山东济南 250357;
山东大学经济学院,山东济南 250100
Is the Loan Interest Rate for Green Enterprises Lower? From the Perspective of Loan Pricing Behavior of Commercial Banks
ZHANG Tian, LIU Yiming
School of Economics and Trade,Shandong Management University;
School of Economics,Shandong University
下载:  PDF (723KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 绿色信贷是中国绿色金融最重要的政策实践,绿色企业能否获得贷款利率优惠对推进经济绿色转型至关重要。采用银行逐笔贷款数据,本文从商业银行贷款定价行为视角,考察绿色企业的贷款利率水平。研究发现,绿色企业贷款利率显著低于非绿色企业,环境规制强度提升和绿色信贷竞争加剧是其内在原因。绿色企业贷款利率更低不仅是信贷市场对企业绿色属性的认可,也是相关政策推动的结果。进一步地,不同银行和企业绿色贷款定价差异显著,国有银行提供的绿色贷款利率水平最低,中小微绿色企业的贷款利率降幅更大,但担保条款也更严格。此外,银行绿色贷款定价有效反映了信用风险,是有效率的。本文为提升绿色信贷体系效率提供有益参考。
   
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张甜
刘一鸣
关键词:  绿色信贷  贷款定价  商业银行  绿色企业    
Summary:  Promoting green and low-carbon development is pivotal to achieving high-quality growth. However, green products, characterized by quasi-public good attributes, often generate investment returns below investors' expected thresholds. Reducing financing costs is therefore crucial to enhancing returns and channeling social capital into green industries. Green credit, as a vital tool and policy instrument for supporting green transformation of the economy, plays a critical role in offering preferential loan rates to green enterprises. Enhancing commercial banks' lending support for green enterprises relies not only on the impetus of green finance policies but, more critically, on the credit market's recognition of green firms, while it has received insufficient attention in the existing literature. Against the backdrop of escalating environmental regulations intensity by the Chinese government and intensifying competition in green credit among banks, do green enterprises enjoy lower loan interest rates compared to their non-green counterparts? What role do market forces play? Moreover, how does their influence differ from that of policy factors?
This paper examines whether green enterprises enjoy lower loan rates compared to non-green enterprises,and particular focus on the roles of environmental regulation and market competition in shaping credit terms. Furthermore, it disentangles the distinct effects of policy interventions versus market forces on banks' green lending strategies. Building on China's unique green credit market characteristics, the paper then examines heterogeneous pricing patterns across different bank types and firm sizes. Finally, the study evaluates the pricing efficiency of green loans.
Using desensitized loan-by-loan data from a province in China, covering all corporate loans issued by banks from October 2020 to December 2022. We find that green enterprises receive significantly lower loan rates than their non-green counterparts, driven primarily by stricter environmental regulations and heightened green credit competition, which enhances the creditworthiness of green enterprises and compresses banks' marginal profitability respectively. This rate advantage reflects both market-based recognition of green attributes and policy-induced incentives. Significant disparities exist across banks and enterprises: state-owned banks offer the lowest rates to green firms, while small and medium-sized green enterprises (SMEs) receive more favorable rates but face stricter collateral requirements. Additionally, banks' green loan pricing effectively reflects credit risks, hence it is efficient.
Based on the research findings, the following policy recommendations are proposed: First, it is recommended to adopt differentiated policies to incentivize commercial banks to increase financial support for green enterprises, while fully leveraging the government's guiding and mandatory role in environmental regulation. Second, banks should integrate green credit policies with their customer base and asset structure to strengthen risk management capabilities in green lending process. Meanwhile, they should actively develop green financial products to provide diversified financing solutions for green enterprises of varying sizes. Third, authorities should not only clarify the basic requirements for disclosure, which include entities, content, format, and timelines, but also harness the power of the digital economy to improve green enterprises' disclosure capacity and motivation. Additionally, inter-departmental collaboration should be enhanced by establishing platforms for sharing environmental data and strengthening cooperation with financial institutions in data connectivity, thereby improving the efficiency of green finance capital allocation.
This paper contributes to the existing literature from the following three dimensions: Firstly, the paper enriches green credit research by exploring the roles of environmental regulations and market competition in banks' green loan pricing and further examining their differential impacts compared to policy factors. It provides theoretical insights into understanding banks' green lending behavior and policy formulation. Secondly, the research expands the study of commercial banks' green loan pricing behavior by utilizing representative loan-by-loan data to analyze differentiated pricing strategies for enterprises of varying sizes. It reveals banks' pricing practices through both interest rates and collateral requirements, offering valuable implications for improving resource allocation efficiency in green credit markets. Thirdly, the paper deepens research on the effectiveness of green development policies by comparing changes in green enterprise loan rates under the influence of fiscal policies, financial policies, and their combined effects. It provides empirical support for enhancing the design and implementation of green development policies.
Keywords:  Green Credit    Loan Pricing    Commercial Banks    Green Enterprises
JEL分类号:  D40   G21   Q50  
基金资助: * 本文感谢山东省自然科学基金青年项目(ZR2024QG004)、山东省高等学校青创科技支持计划(2023RW009)和国家社会科学基金重大项目(19ZDA091)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  刘一鸣,经济学博士,副研究员,山东大学经济学院、人文社科研究院、山东民营经济高质量发展研究院,E-mail:liuyiming@sdu.edu.cn.   
作者简介:  张 甜,经济学博士,讲师,山东管理学院经贸学院,E-mail:zhangt1012@126.com.
引用本文:    
张甜, 刘一鸣. 绿色企业的贷款利率会更低吗?——基于商业银行贷款定价行为的视角[J]. 金融研究, 2025, 537(3): 76-93.
ZHANG Tian, LIU Yiming. Is the Loan Interest Rate for Green Enterprises Lower? From the Perspective of Loan Pricing Behavior of Commercial Banks. Journal of Financial Research, 2025, 537(3): 76-93.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V537/I3/76
[1]丁杰、李仲飞和黄金波,2022,《绿色信贷政策能够促进企业绿色创新吗?——基于政策效应分化的视角》,《金融研究》第12期,第55~73页。
[2]丁宁、任亦侬和左颖,2020,《绿色信贷政策得不偿失还是得偿所愿?——基于资源配置视角的PSM-DID成本效率分析》,《金融研究》第4期,第112~130页。
[3]李俊成、彭俞超和王文蔚,2023,《绿色信贷政策能否促进绿色企业发展?——基于风险承担的视角》,《金融研究》第3期,第112~130页。
[4]李青原和肖泽华,2020,《异质性环境规制工具与企业绿色创新激励——来自上市企业绿色专利的证据》,《经济研究》第9期,第192~208页。
[5]梁琪、李温玉和余峰燕,2023,《“遵从监管”抑或“主动履责”:双重治理视角下银行绿色治理指数及其对银行绩效的影响研究》,《金融研究》第6期,第38~56页。
[6]刘柏和卢家锐,2024,《ESG榜单对企业融资成本冲击的异化效应》,《财经研究》第4期,第124~138页。
[7]刘贯春、张军和叶永卫,2022,《银行贷款及其所有制结构的投资治理效应》,《财贸经济》第6期,第64~79页。
[8]刘莉亚、余晶晶、杨金强和朱小能,2017,《竞争之于银行信贷结构调整是双刃剑吗?——中国利率市场化进程的微观证据》,《经济研究》第5期,第131~145页。
[9]马骏,2015,《论构建中国绿色金融体系》,《金融论坛》第5期,第18~27页。
[10]马君潞、郭牧炫和李泽广,2013,《银行竞争、代理成本与借款期限结构——来自中国上市公司的经验证据》,《金融研究》第4期,第71~84页。
[11]钱龙,2015,《信息不对称与中小企业信贷风险缓释机制研究》,《金融研究》第10期,第115~132页。
[12]宋全云、吴雨和钱龙,2016,《存款准备金率与中小企业贷款成本——基于某地级市中小企业信贷数据的实证研究》,《金融研究》第6期,第64~78页。
[13]苏冬蔚和连莉莉,2018,《绿色信贷是否影响重污染企业的投融资行为?》,《金融研究》第12期,第123~137页。
[14]王杰和刘斌,2014,《环境规制与企业全要素生产率——基于中国工业企业数据的经验分析》,《中国工业经济》第3期,第44~56页。
[15]谢芳和李俊青,2019,《环境风险影响商业银行贷款定价吗?——基于环境责任评分的经验分析》,《财经研究》第11期,第57~69页。
[16]尹志超、钱龙和吴雨,2015,《银企关系、银行业竞争与中小企业借贷成本》,《金融研究》第9期,第134~149页。
[17]张小茜和王志伟,2023,《绿色债券有利于降低企业融资成本吗——来自政府监管和环境治理的视角》,《金融研究》第9期,第94~111页。
[18]Belasri,S.,M. Gomes,and G. Pijourlet,2020,“Corporate Social Responsibility and Bank Efficiency”,Journal of Multinational Financial Management,54:100612.
[19]Benmelech,E.,N. Kumar,and R. Rajan,2022,“The Secured Credit Premium and the Issuance of Secured Debt”,Journal of Financial Economics,146(1) :143~171.
[20]Berger,A.N.,and T.H. Hannan,1989,“The Price-Concentration Relationship in Banking”,The Review of Economics and Statistics,71(2):291~299.
[21]Biswas,N.,2011,“Sustainable Green Banking Approach: The Need of the Hour”,Business Spectrum,1(1) : 32~38.
[22]Du,X.Q.,J. Weng,Q. Zeng,Y. Chang,and H. Pei, 2017, “Do Lenders Applaud Corporate Environmental Performance? Evidence from Chinese Private-Owned Firms”,Journal of Business Ethics,143(1):179~207.
[23]Ehlers,T. ,Packer,F. and K. De Greiff,2022,“The Pricing of Carbon Risk in Syndicated Loans: Which Risks are Priced and Why?”,Journal of Banking & Finance,136:106180.
[24]Garriga,E. and D. Melé,2004,“Corporate Social Responsibility Theories: Mapping the Territory”,Journal of Business Ethics,53(1/2): 51~71.
[25]Larcker,D.F.,and E. M. Watts,2020,“Where's the Greenium?”,Journal of Accounting and Economics,69:101312.
[26]Montmartin,B.,and M. Herrera,2015,“Internal and External Effects of R&D Subsidies and Fiscal Incentives: Empirical Evidence Using Spatial Dynamic Panel Models”,Research Policy,44(5) :1065~1079.
[27]Nandy,M. and S. Lodh,2012,“Do Banks Value the Eco-Friendliness of Firms in Their Corporate Lending Decision? Some Empirical Evidence”,International Review of Financial Analysis,25(6):83~93.
[28]Petroni,G.,B.Bigliardi,and F.Galati,2019,“Rethinking the Porter Hypothesis: The Underappreciated Importance of Value Appropriation and Pollution Intensity”,Review of Policy Research,36(1) :121~140.
[29]Stiglitz,J.E. ,2015,“Leaders and Followers: Perspectives on the Nordic Model and the Economics of Innovation”,Journal of Public Economics,127:3~16.
[30]Yannelis,C.,and A. L. Zhang,2023,“Competition and Selection in Credit Markets”,Journal of Financial Economics,150(2):103710.
[31]Zhou,G.,C. Liu,and S. Luo,2021,“Resource Allocation Effect of Green Credit Policy: Based on DID Model”,Mathematics,9(2):159~177.
[1] 巩冰, 张蓓, 杨斯尧, 徐照宜. “双碳”目标下碳减排支持工具对商业银行市场价值的影响研究[J]. 金融研究, 2024, 529(7): 77-95.
[2] 方意, 和文佳, 王琦. 非核心负债业务、流动性渠道和银行业系统性风险:理论模型与经验分析[J]. 金融研究, 2024, 525(3): 20-37.
[3] 王韧, 段义诚, 何强. 绿色产业的信贷成本匹配与资源配置效率:宏观效应与微观机制[J]. 金融研究, 2024, 534(12): 97-115.
[4] 李天时, 祝继高. 地方银行业集中度对地方性商业银行贷款配置效率的影响研究[J]. 金融研究, 2023, 519(9): 76-93.
[5] 朱宁, 曾恒煜, 于之倩. 中国商业银行运营效率研究 ——基于多阶段合作型网络DEA的实证分析[J]. 金融研究, 2023, 518(8): 37-54.
[6] 郭杰, 饶含. 商业银行债券融资与货币政策传导[J]. 金融研究, 2023, 515(5): 38-57.
[7] 李俊成, 彭俞超, 王文蔚. 绿色信贷政策能否促进绿色企业发展?——基于风险承担的视角[J]. 金融研究, 2023, 513(3): 112-130.
[8] 马理, 张人中, 马威, 牛慕鸿. 能源结构有序调整与绿色信贷政策调控[J]. 金融研究, 2023, 511(1): 94-112.
[9] 金祥义, 张文菲, 施炳展. 绿色金融促进了中国出口贸易发展吗?[J]. 金融研究, 2022, 503(5): 38-56.
[10] 张琳, 廉永辉, 方意. 政策连续性与商业银行系统性风险[J]. 金融研究, 2022, 503(5): 95-113.
[11] 丁杰, 李仲飞, 黄金波. 绿色信贷政策能够促进企业绿色创新吗?——基于政策效应分化的视角[J]. 金融研究, 2022, 510(12): 55-73.
[12] 潘敏, 刘红艳, 程子帅. 极端气候对商业银行风险承担的影响——来自中国地方性商业银行的经验证据[J]. 金融研究, 2022, 508(10): 39-57.
[13] 李哲, 王文翰. “多言寡行”的环境责任表现能否影响银行信贷获取——基于“言”和“行”双维度的文本分析[J]. 金融研究, 2021, 498(12): 116-132.
[14] 邓伟, 宋敏, 刘敏. 借贷便利创新工具有效影响了商业银行贷款利率吗?[J]. 金融研究, 2021, 497(11): 60-78.
[15] 李丽芳, 谭政勋, 叶礼贤. 改进的效率测算模型、影子银行与中国商业银行效率[J]. 金融研究, 2021, 496(10): 98-116.
[1] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[2] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
[3] 孙淑伟, 梁上坤, 阮刚铭, 付宇翔. 高管减持、信息压制与股价崩盘风险[J]. 金融研究, 2017, 449(11): 175 -190 .
[4] 潘彬, 王去非, 金雯雯. 时变视角下非正规借贷利率的货币政策反应研究[J]. 金融研究, 2017, 448(10): 52 -67 .
[5] 项后军, 闫玉. 理财产品发展、利率市场化与银行风险承担问题研究[J]. 金融研究, 2017, 448(10): 99 -114 .
[6] 李万福, 杜静, 张怀. 创新补助究竟有没有激励企业创新自主投资——来自中国上市公司的新证据[J]. 金融研究, 2017, 448(10): 130 -145 .
[7] 江娇, 刘红忠, 曾剑平. 中国股票网络论坛的信息含量分析段[J]. 金融研究, 2017, 448(10): 178 -192 .
[8] 步丹璐, 狄灵瑜. 治理环境、股权投资与政府补助[J]. 金融研究, 2017, 448(10): 193 -206 .
[9] 张成思, 党超. 基于双预期的前瞻性货币政策反应机制[J]. 金融研究, 2017, 447(9): 1 -17 .
[10] 范庆祝, 贾若, 孙祁祥. 寿险供给侧指标对寿险消费的影响——基于寿险供给质量、动能和效率的视角[J]. 金融研究, 2017, 447(9): 115 -129 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1