Please wait a minute...
金融研究  2025, Vol. 536 Issue (2): 95-113    
  本期目录 | 过刊浏览 | 高级检索 |
生产网络中心性与银行信贷决策
江伟, 李钰, 雷婧祯
中国人民大学商学院,北京 100872
Production Network Centrality and Long-term Bank Lending Decisions
JIANG Wei, LI Yu, LEI Jingzhen
School of Business, Renmin University of China
下载:  PDF (820KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文考察银行在信贷决策时是否以及如何考虑企业所处部门在生产网络中的位置。研究结果表明,企业所处部门在生产网络中的中心性越高,银行会给这些企业提供更多的长期贷款和更少的短期贷款(对于国有企业和对应产出对国民经济重要性较高的部门来说尤其如此),有助于降低这些中心企业的业绩波动性,一定程度上可以对冲我国生产网络所面临的潜在冲击。本文的研究不仅对学术界更全面地理解宏观经济波动的来源、传导以及风险防范具有重要的理论意义,而且对于政府与银行等从增强生产网络稳定性与韧性的角度提升产业链供应链韧性和安全水平,进而实现我国经济高质量发展,也具有现实启发意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江伟
李钰
雷婧祯
关键词:  生产网络  银行信贷  中心性  供应链韧性    
Summary:  One prominent feature of the current economy is the emergence of a complex production network among various sectors and firms through supply chains, rather than simple upstream and downstream relationships (Carvalho, 2014). The formation and stability of production networks facilitate the exchange of information and technological collaboration across different sectors, improving corporate performance (Bernard et al., 2019) and contributing to both national and global economic growth. However, complex production networks can also serve as channels through which systemic shocks propagate, potentially amplifying the adverse effects of macroeconomic fluctuations (Acemoglu et al., 2012; Baqaee, 2018). Compared to the potentially enormous economic losses that may result from shocks to production networks, most existing finance and accounting research focuses on examining the spillover effects of operational or financial risks between upstream and downstream firms within supply chains (Chiu et al., 2019; Costello, 2020), while neglecting the possibility that idiosyncratic micro-level shocks between these firms could accumulate into systemic shocks affecting the entire production network (Ahern and Harford, 2014).
The limited existing research on production networks primarily examines the economic impacts and risk mitigation strategies from the perspective of individual firms when the production network is subjected to shocks (Ahern and Harford, 2014; Aobdia et al., 2014; Barrot and Sauvagnat, 2016; Gao, 2021). However, few studies have explored risk prevention before shocks and the post-shock recovery of supply chains from the perspectives of bank lending decisions, as well as government monetary, fiscal, and industrial policies. In fact, bank lending policies and government economic policies are common measures used to prevent macroeconomic fluctuations and can significantly influence such fluctuations. Therefore, conducting related research from the perspective of production networks offers important theoretical implications for understanding the sources, transmission, and prevention of macroeconomic risks more comprehensively. Simultaneously, it provides practical insights for governments and banks to enhance the stability and resilience of production networks, thereby advancing the modernization of supply chains and achieving high-quality economic development in China.
Based on these backgrounds, our study investigates whether and how banks consider potential shocks faced by firms in different sectors in the production networks when making lending decisions. We choose A-share listed firms in China's capital market from 2002 to 2022 as the research sample. All financial and corporate governance data of the sample are sourced from the CSMAR and CNRDS databases, while the centrality of the sectors is calculated based on the Input-Output Tables published by the National Bureau of Statistics from 2002 to 2020. Our findings indicate that firms with higher centrality in the production network may face greater potential shocks. Considering both banks' own risk management and government policy objectives, banks are likely to provide these firms with more long-term (and less short-term) loans, especially for state-owned enterprises and sectors whose output is crucial to the national economy. Further analysis suggests that long-term loans help reduce the performance volatility of these central firms. These findings suggest that banks can act as an economic stabilizer by mitigating the risks associated with potential shocks to China's production network through their lending decisions.
Possible contributions of our paper lie in the following aspects: First, in the field of finance and accounting research on production networks, most existing literature focuses on the spillover effects of operational or financial risks between upstream and downstream firms in supply chains (Chiu et al., 2019; Costello, 2020). This paper fills a gap by examining banks' preemptive risk mitigation of potential shocks from the perspective of production networks, addressing the limitations of previous research that focused solely on firm-level interactions within supply chains. Second, regarding the factors influencing bank lending, previous research primarily examined firms' characteristics from the perspective of individual firms or supply chains (Giannetti et al., 2011; Donovan et al., 2021). This paper explores the role of bank lending in mitigating potential shocks from the perspective of production networks, providing deeper insights into the micro-level mechanisms through which banks influence economic growth and macroeconomic fluctuations. This has important practical implications for governments and banks in enhancing the stability and resilience of production networks, modernizing industrial and supply chains, and ultimately achieving high-quality economic development in China. Future research can be expanded in two directions: First, regarding endogeneity issues, future studies could consider exogenous shock events such as the U.S.-China trade war and the COVID-19 pandemic. Second, future research could delve deeper into the role of government monetary, fiscal, and industrial policies in preventing risks before shocks and restoring supply chains after shocks. Finally, future research could consider the availability of data on firms' credit demand to better disentangle the independent effects of both supply-and demand-side factors on long-term credit decisions.
Keywords:  Production Networks    Bank Lending    Centrality    Supply Chain Resilience
JEL分类号:  G32   G34   M41  
基金资助: * 本文感谢国家自然科学基金面上项目(72072071)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  雷婧祯,博士研究生,中国人民大学商学院,E-mail:leijingzhen@ruc.edu.cn.   
作者简介:  江 伟,管理学博士,教授,中国人民大学商学院,E-mail:jiangwei@rmbs.ruc.edu.cn.
李 钰,博士研究生,中国人民大学商学院,E-mail:liyu_rmbs@ruc.edu.cn.
引用本文:    
江伟, 李钰, 雷婧祯. 生产网络中心性与银行信贷决策[J]. 金融研究, 2025, 536(2): 95-113.
JIANG Wei, LI Yu, LEI Jingzhen. Production Network Centrality and Long-term Bank Lending Decisions. Journal of Financial Research, 2025, 536(2): 95-113.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V536/I2/95
[1]底璐璐、罗勇根、江伟和陈灿,2020,《客户年报语调具有供应链传染效应吗?—企业现金持有视角》,《管理世界》第8期,第148~163页。
[2]黄群慧和倪红福,2020,《基于价值链理论的产业基础能力与产业链水平提升研究》,《经济体制改革》第5期,第11~21页。
[3]江伟和姚文韬,2016,《〈物权法〉的实施与供应链金融—来自应收账款质押融资的经验证据》,《经济研究》第1期,第139~152页。
[4]江伟和曾业勤,2013,《金融发展,产权性质与商业信用的信号传递作用》,《金融研究》第6期,第89~103页。
[5]李欢、李丹和王丹,2018,《客户效应与上市公司债务融资能力—来自我国供应链客户关系的证据》,《金融研究》第6期,第138~154页。
[6]刘晓曙和孙济潍,2023,《夯实制造业信贷风险管理“基本功”》,《中国银行业》第11期,第71~73页。
[7]陆正飞、何捷和窦欢,2015,《谁更过度负债:国有还是非国有企业?》,《经济研究》第12期,第54~67页。
[8]任秋潇和王一鸣,2021,《行业组合视角下的银行信贷优化管理—基于中国商业银行的优化模型设计与实证分析》,《金融论坛》第3期,第9~20页。
[9]孙铮、刘凤委和李增泉,2005,《市场化程度、政府干预与企业债务期限结构—来自中国上市公司的经验证据》,《经济研究》第5期,第52~63页。
[10]王克敏、刘静和李晓溪,2017,《产业政策、政府支持与公司投资效率研究》,《管理世界》第3期,第113~124页。
[11]王雄元和曾敬,2019,《年报风险信息披露与银行贷款利率》,《金融研究》第1期,第54~71页。
[12]杨继光和刘海龙,2009,《商业银行组合信用风险经济资本测度方法研究》,《金融研究》第4期,第143~158页。
[13]余明桂和潘红波,2008a,《政治关系、制度环境与民营企业银行贷款》,《管理世界》第8期,第9~21页。
[14]余明桂和潘红波,2008b,《政府干预、法治、金融发展与国有企业银行贷款》,《金融研究》第9期,第1~22页。
[15]曾嶒和唐松,2023,《新冠疫情下国有企业的经济稳定器作用—基于供应链扶持的视角》,《经济研究》第3期,第78~96页。
[16]Acemoglu, D., V. Carvalho, A. Ozdaglar and A. Tahbas-Salehi, 2012, “The Network Origins of Aggregate Fluctuations”, Econometrica, 80(5), pp.1977~2016.
[17]Ahern, K. R. and J. Harford, 2014, “The Importance of Industry Links in Merger Waves”, The Journal of Finance, 69(2), pp.527~576.
[18]Allen, F., J. Qian and M. Qian, 2005, “Law, Finance, and Economic Growth in China”, Journal of Financial Economics, 77(1), pp.57~116.
[19]Aobdia, D., J. Caskey and N. B. Ozel, 2014, “Inter-Industry Network Structure, Information Transfers, and the Cross-Predictability of Earnings and Stock Returns”, Review of Accounting Studies, 19(3), pp.1191~1224.
[20]Baqaee, D. R., 2018, “Cascading Failures in Production Networks”, Econometrica, 86(5), pp.1819~1838.
[21]Barrot, J. N. and J. Sauvagnat, 2016, “Input Specificity and the Propagation of Idiosyncratic Shocks in Production Networks”, Quarterly Journal of Economics, 131(3), pp.1543~1592.
[22]Bernard, A. B., A. Moxnes and Y. U. Saito, 2019, “Production Networks, Geography, and Firm Performance”, Journal of Political Economy, 127(2), pp.639~688.
[23]Boehm, C. E., A. Flaaen and N. Pandalai-Nayar, 2019, “Input Linkages and the Transmission of Shocks: Firm-Level Evidence from the 2011 Tōhoku Earthquake”, Review of Economics and Statistics, 101(1), pp.60~75.
[24]Campello, M. and J. Gao, 2017, “Customer Concentration and Loan Contract Terms”, Journal of Financial Economics, 123(1), pp.108~136.
[25]Carvalho, V. M., 2014, “From Micro to Macro via Production Networks”, Journal of Economic Perspectives, 28(4), pp.23~48.
[26]Carvalho, V. M., M. Nirei, Y. U. Saito and A. Tahbaz-Salehi, 2021, “Supply Chain Disruptions: Evidence from the Great East Japan Earthquake”, Quarterly Journal of Economics, 136(2), pp.1255~1321.
[27]Chiu, T. T., J. B. Kim and Z. Wang, 2019, “Customers' Risk Factor Disclosures and Suppliers' Investment Efficiency”, Contemporary Accounting Research, 36(2), pp.773~804.
[28]Cohen, D., B. Li, N. Li and Y. Lou, 2022, “Major Government Customers and Loan Contract Terms”, Review of Accounting Studies, 27(1), pp.275~312.
[29]Costello, A. M., 2020, “Credit Market Disruptions and Liquidity Spillover Effects in the Supply Chain”, Journal of Political Economy, 128(9), pp.3434~3468.
[30]Demirgüç-Kunt,A. and V. Maksimovic, 1999, “Institutions, Financial Markets, and Firm Debt Maturity”, Journal of Financial Economics, 54(3), pp.295~336.
[31]Diamond, D. W., 1991, “Debt Maturity Structure and Liquidity Risk”, Quarterly Journal of Economics, 106(3), pp.709~737.
[32]Donovan, J., J. Jennings, K. Koharki and J. Lee, 2021, “Measuring Credit Risk Using Qualitative Disclosure”, Review of Accounting Studies, 26(2), pp.815~863.
[33]Fahlenbrach, R., K. Rageth and R. M. Stulz, 2021, “How Valuable is Financial Flexibility When Revenue Stops? Evidence from the COVID-19 Crisis”, The Review of Financial Studies, 34(11), pp.5474~5521.
[34]Gao, J., 2021, “Managing Liquidity in Production Networks: The Role of Central Firms”, Review of Finance, 25(3), pp.819~861.
[35]Giannetti, M., M. Burkart and T. Ellingsen, 2011, “What You Sell is What You Lend? Explaining Trade Credit Contracts”, The Review of Financial Studies, 24(4), pp.1261~1298.
[36]Levine, R., 1997, “Financial Development and Economic Growth: Views and Agenda”, Journal of Economic Literature, 35(2), pp.688~726.
[37]Lucas Jr, R. E., 1977, “Understanding Business Cycles”, Carnegie-Rochester Conference Series on Public Policy, 5(1), pp.7~29.
[38]McNerney, J., C. Savoie, F. Caravelli, V. M. Carvalho and J. D. Farmer, 2022, “How Production Networks Amplify Economic Growth”, Proceedings of the National Academy of Sciences, 119(1), pp.e2106031118.
[1] 李政, 李薇, 李丽雯. 美国三类不确定性冲击、生产网络传导与中国行业尾部风险[J]. 金融研究, 2024, 530(8): 39-57.
[2] 杭静, 申广军. 金融危机后中国制造业部门的配置效率——基于生产网络视角的研究[J]. 金融研究, 2024, 524(2): 57-75.
[3] 王雅琦, 贾思源. 汇率冲击、银行外币敞口与企业投资[J]. 金融研究, 2024, 534(12): 78-96.
[4] 周颖刚, 肖潇. 汇率波动、生产网络与股市风险——基于中美贸易摩擦背景的分析[J]. 金融研究, 2022, 505(7): 115-134.
[5] 倪红福. 扭曲因子、进口中间品价格与全要素生产率——基于非竞争型投入产出网络结构一般均衡模型事后核算方法[J]. 金融研究, 2022, 500(2): 21-39.
[6] 郭晔, 未钟琴, 方颖. 金融科技布局、银行信贷风险与经营绩效——来自商业银行与科技企业战略合作的证据[J]. 金融研究, 2022, 508(10): 20-38.
[7] 赵娜, 王博, 张珂瑜. 融资租赁、银行信贷与企业投资[J]. 金融研究, 2021, 487(1): 150-168.
[8] 叶永卫, 李增福. 续贷限制与企业技术创新[J]. 金融研究, 2020, 485(11): 151-169.
[9] 龙海明, 王志鹏. 征信系统、法律权利保护与银行信贷[J]. 金融研究, 2017, 440(2): 117-130.
[10] 褚剑, 方军雄, 于传荣. 卖空约束放松与银行信贷决策[J]. 金融研究, 2017, 450(12): 111-126.
[1] 范志勇, 安戈洋, 章永辉. 银行间市场短端利率波动与货币政策传导效率——基于利率互换市场高频识别与局部投影方法[J]. 金融研究, 2024, 531(9): 1 -19 .
[2] 金智, 彭辽. 地方人才引进政策与公司人力资本[J]. 金融研究, 2022, 508(10): 117 -134 .
[3] 李哲, 薛淞. 政府环境影响评价制度与企业绿色技术创新[J]. 金融研究, 2024, 525(3): 94 -112 .
[4] 毛捷, 刘勇. 地方关联性举债与异地企业投资[J]. 金融研究, 2025, 535(1): 96 -113 .
[5] 潘冬阳, 陈川祺, Michael Grubb. 金融政策与经济低碳转型——基于增长视角的研究[J]. 金融研究, 2021, 498(12): 1 -19 .
[6] 张成思, 郑宁. 中国实业部门金融化分层驱动机制[J]. 金融研究, 2023, 515(5): 1 -19 .
[7] 马勇, 章洪铭. 庞氏融资、去杠杆与宏观审慎政策[J]. 金融研究, 2025, 535(1): 1 -19 .
[8] 易纲. 中国的利率体系与利率市场化改革[J]. 金融研究, 2021, 495(9): 1 -11 .
[9] 张鹏龙, 胡羽珊. 被忽略的半个世界:中国产品出口“零贸易”研究[J]. 金融研究, 2025, 535(1): 58 -76 .
[10] 邓伟, 夏晗景, 刘冲. 债务风险防控与企业债券发行分化[J]. 金融研究, 2025, 535(1): 134 -151 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1