Please wait a minute...
金融研究  2024, Vol. 533 Issue (11): 113-131    
  本期目录 | 过刊浏览 | 高级检索 |
数字经济发展与居民收入流动性
宋全云, 章辉, 吴雨
西南财经大学金融学院, 四川成都 611130;
上海交易集团有限公司(上海市公共资源交易中心), 上海 200062;
南京农业大学金融学院, 江苏南京 210095
Digital Economy and Household Income Mobility
SONG Quanyun, ZHANG Hui, WU Yu
School of Finance, Southwestern University of Finance and Economics;
Shanghai Exchange Group Co., LTD. (Shanghai Public Resources Trading Center);
College of Finance, Nanjing Agricultural University
下载:  PDF (788KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 数字经济发展能否促进共同富裕,关键在于其能否增加弱势地区或群体由贫变富的机会、缓解阶层固化。本文将城市层面的数字经济指标与2013—2019年中国家庭金融调查数据相结合,分析数字经济时代中国居民收入流动性的演变特征,并考察数字经济发展对居民收入流动性的影响。研究发现,2013—2019年间,中国居民收入流动性先降后升,中等收入群体向上流动情况的改善是中国居民收入流动性提升的主要动力来源。实证分析表明,数字经济发展显著提高了居民收入流动性,在考虑内生性问题和稳健性检验后结果依旧显著。机制分析发现,数字经济发展主要通过就业促进效应和金融资产投资效应提升居民收入流动性。分组检验表明,在城镇地区、高人力资本和较高收入家庭中,数字经济发展对居民收入流动性的促进作用更明显,意味着数字经济发展驱动的居民收入流动性提升尚未实现包容性增长。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋全云
章辉
吴雨
关键词:  数字经济发展  收入流动性  就业效应  金融投资效应    
Summary:  As an important driving force of China's economic growth, the digital economy is profoundly reshaping the financial behavior of residents, which will trigger changes in the income level and income structure of households. Whether the digital economy can promote common prosperity depends on whether its ability to increase the opportunities for disadvantaged areas or groups to escape from poverty and alleviate the consolidation of classes. In this context, it is of great significance to clarify the evolution of Chinese households' income mobility and explore the impact of digital economy development on households' income mobility and its potential mechanisms.
Based on this, this paper uses the multi-dimensional digital economy development index and the China Household Finance Survey (CHFS) data from 2013 to 2019, to analyze the evolution characteristics of Chinese households' income mobility, and investigates the impact of digital economy development on households' income mobility from a micro-level perspective. Descriptive analysis that from 2013 to 2019, the income mobility of Chinese households declined first and then increased, and the middle-income group was the main driving force for the increase of the income mobility of Chinese households. Empirical analysis shows that the development of digital economy can significantly promote the improvement of household income mobility. However, the enhancement effect of digital economy development on households' income mobility is more significant among households residing in urban areas, those with higher human capital and higher income. This indicates that the gap in income mobility of households with different characteristics in China may be further widened, and the inclusive benefits of the digital economy development on the improvement of income mobility has not yet been reflected. The mechanism analysis shows that promoting employment participation and financial asset investment are key channels through which digital economic development promotes the improvement of. Moreover, the employment promotion effect is more pronounced in better educated households, which deserves further investigation.
The possible contributions of this study are mainly reflected in the following three aspects. Firstly, this paper empirically examines the influence of digital economic development on the income mobility of households. It not only provides a new research perspective for the study of households' income mobility, but also helps deepen the understanding of the impact of digital economic development on income distribution. Secondly, this paper investigates the heterogeneous impact of digital economic development in improving households' income mobility from multiple aspects. This will be conducive to answering the theoretical controversy over whether digital economic development is conducive to promoting inclusive growth and achieving the goal of common prosperity. Thirdly, this article analyzes the characteristics of the income mobility in China from both the aspects of the magnitude and quality of income mobility, and conducts a comparative analysis of the income mobility of urban and rural households to display the evolution of the characteristics of households' income mobility in China in recent years in more detailed depiction.
The findings of this paper carry important policy implications. First of all, we should vigorously develop the digital economy, continuously optimize its development model, and identify the weaknesses in its development, so as to more effectively play the role of digital economy development in boosting households' income growth. Secondly, we should strengthen the construction of digital infrastructure, the training of digital professionals and the development of digital economy in underdeveloped areas such as rural areas, so as to break the inhibiting effect of the digital divide in underdeveloped areas on the dividends of digital economy. This paper finds that the development of digital economy has no significant effect on the income mobility of households in rural areas. Therefore, underdeveloped areas such as rural areas should introduce the development experience of advanced areas, rationally plan and build communication and network infrastructure, and pay attention to the cultivation and introduction of corresponding technologies and talents, so as to effectively improve the enjoyment level of digital economy dividend. Finally, actively popularize and promote digital technology-related education to comprehensively improve households' digital literacy. Government departments in less developed regions are encouraged to collaborate with communication and infrastructure departments to enhance the digital skills of vulnerable groups and their usage of digital products and services, ensuring that the development of digital economy can truly benefit the people.
This study has some limitations. For example, the empirical analysis in this paper fails to clearly clarify the impact of digital economy on income mobility within urban households, income mobility within rural households, and the income mobility between urban and rural households. This remains an important issue worthy of further investigation.
Keywords:  Digital Economy    Income Mobility    Labor Force Participation    Financial Investment
JEL分类号:  O33   O18   D31  
基金资助: * 本文感谢教育部人文社会科学研究青年基金项目(22YJC790106)和四川省自然科学基金青年基金项目(2023NSFSC1059)、中央高校基本科研业务费专项资金(JBK2406006)、南京农业大学中央高校基本科研业务费人文社会科学研究基金(SKCX2024013)对本文的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  吴 雨,经济学博士,教授,南京农业大学金融学院,E-mail:wuyu@njau.edu.cn.   
作者简介:  宋全云,经济学博士,副教授,西南财经大学金融学院,E-mail:squanyun@swufe.edu.cn.
章 辉,金融硕士,上海交易集团有限公司(上海市公共资源交易中心),E-mail:zhangh hui1998@163.com.
引用本文:    
宋全云, 章辉, 吴雨. 数字经济发展与居民收入流动性[J]. 金融研究, 2024, 533(11): 113-131.
SONG Quanyun, ZHANG Hui, WU Yu. Digital Economy and Household Income Mobility. Journal of Financial Research, 2024, 533(11): 113-131.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V533/I11/113
[1]安同良和杨晨,2020,《互联网重塑中国经济地理格局:微观机制与宏观效应》,《经济研究》第2期,第4~19页。
[2]柏培文和张云,2021,《数字经济、人口红利下降与中低技能劳动者权益》,《经济研究》第5期,第91~108页。
[3]柏培文和喻理,2021,《数字经济发展与企业价格加成:理论机制与经验事实》,《中国工业经济》第11期,第59~77页。
[4]陈贵富、韩静和韩恺明,2022,《城市数字经济发展、技能偏向型技术进步与劳动力不充分就业》,《中国工业经济》第8期,第118~136页。
[5]程名望和张家平,2019,《互联网普及与城乡收入差距:理论与实证》,《中国农村经济》第2期,第19~41页。
[6]郭峰、熊云军、石庆玲和王靖一,2023,《数字经济与行政边界地区经济发展再考察——来自卫星灯光数据的证据》,《管理世界》第4期,第16~33页。
[7]郭凯明和罗敏,2021,《有偏技术进步、产业结构转型与工资收入差距》,《中国工业经济》第3期,第24~41页。
[8]江艇,2022,《因果推断经验研究中的中介效应与调节效应》,《中国工业经济》第5期,第100~120页。
[9]连玉君、黎文素和黄必红,2015,《子女外出务工对父母健康和生活满意度影响研究》,《经济学(季刊)》第1期,第185~202页。
[10]刘皓琰和李明,2017,《网络生产力下经济模式的劳动关系变化探析》,《经济学家》第12期,第33~41页。
[11]刘晓光、张勋和方文全,2015,《基础设施的城乡收入分配效应:基于劳动力转移的视角》,《世界经济》第3期,第145~170页。
[12]罗楚亮和梁晓慧,2022,《完善数字经济背景下的收入分配机制》,《中国高校社会科学》第5期,第39~46页。
[13]邱泽奇、张樹沁、刘世定和许英康,2016,《从数字鸿沟到红利差异——互联网资本的视角》,《中国社会科学》第10期,第93~115页。
[14]孙文凯、路江涌和白重恩,2007,《中国农村收入流动分析》,《经济研究》第8期,第43~57页。
[15]田鸽和张勋,2022,《数字经济、非农就业与社会分工》,《管理世界》第5期,第72~84页。
[16]王朝明和胡棋智,2008,《中国收入流动性实证研究——基于多种指标测度》,《管理世界》第10期,第30~40页。
[17]王洪亮、刘志彪、孙文华和胡棋智,2012,《中国居民获取收入的机会是否公平:基于收入流动性的微观计量》,《世界经济》第1期,第114~143页。
[18]汪伟、刘玉飞和彭冬冬,2015,《人口老龄化的产业结构升级效应研究》,《中国工业经济》第11期,第47~61页。
[19王正位、邓颖惠和廖理,2016,《知识改变命运:金融知识与微观收入流动性》,《金融研究》第12期,第111~127页。
[20]万相昱,2015,《中国净等价收入规模的测算方法及应用》,《数量经济技术经济研究》第11期,第119~132页。
[21]邢小强、汤新慧、王珏和张竹,2021,《数字平台履责与共享价值创造——基于字节跳动扶贫的案例研究》,《管理世界》第12期,第152~176页。
[22]严斌剑、周应恒和于晓华,2014,《中国农村人均家庭收入流动性研究:1986—2010年》,《经济学(季刊)》第3期,第939~968页。
[23]谢康、廖雪华和肖静华,2021,《效率与公平不完全相悖:信息化与工业化融合视角》,《经济研究》第2期,第190~205页。
[24]杨俊和黄潇,2010,《中国收入流动性再探讨》,《统计研究》第11期,第24~33页。
[25]杨穗和李实,2016,《中国城镇家庭的收入流动性》,《中国人口科学》第5期,第78~89页。
[26]杨穗和李实,2017,《转型时期中国居民家庭收入流动性的演变》,《世界经济》第11期,第3~22页。
[27]张勋和万广华,2016,《中国的农村基础设施促进了包容性增长吗?》,《经济研究》第10期,第82~96页。
[28]张玉梅和陈志钢,2015,《惠农政策对贫困地区农村居民收入流动的影响——基于贵州3个行政村农户的追踪调查分析》,《中国农村经济》第7期,第70~81页。
[29]章奇、米建伟和黄季焜,《收入流动性和收入分配:来自中国农村的经验证据》,《经济研究》第11期,第123~138页。
[30]赵涛、张智和梁上坤,2020,《数字经济、创业活跃度与高质量发展——来自中国城市的经验证据》,《管理世界》第10期,第65~76页。
[31]朱诗娥、杨汝岱和吴比,2018,《中国农村家庭收入流动:1986—2017年》,《管理世界》第10期,第63~72页。
[32]Acemoglu, D., and P. Restrepo, 2018. “Low-skill and High-skill Automation”, Journal of Human Capital, 12(2): 204~232.
[33]Acemoglu, D., and P. Restrepo, 2020. “Robots and Jobs: Evidence from US Labor Markets”, Journal of Political Economy, 128(6): 2188~2244.
[34]Atasoy, H., 2013. “The Effects of Broadband Internet Expansion on Labor Market Outcomes”, ILR Review, 66(2): 315~345.
[35]Bachas, P., P. Gertler, S. Higgins, and E. Seira, 2018. “Digital Financial Services Go a Long Way: Transaction Costs and Financial Inclusion”, AEA Papers and Proceedings, 108: 444~448.
[36]Ding, N., and Y. Wang, 2008. “Household Income Mobility in China and Its Decomposition”, China Economic Review, 19(3): 373~380.
[37]Fields, G. S., and E. A. Ok, 1996. “The Meaning and Measurement of Income Mobility”, Journal of Economic Theory, 71(2): 349~377.
[38]Guellec., D., 2021. “Digital Innovation and the Distribution of Income,” in Carol Corrado, Jonathan Haskel, Javier Miranda, and Daniel Sichel, editors, “Measuring and Accounting for Innovation in the Twenty-First Century”, University of Chicago Press, 323~370.
[39]Hirshleifer, D. and S. Teoh, 2003. “Herding and Cascading in Capital Markets: A Review and Synthesis”, European Financial Management, 9(1): 25~66.
[40]Hong, C. Y., X. Lu, and J. Pan, 2020. “Fintech Adoption and Household Risk-taking”,NBER Working Papers, No.w28063.
[41]Kaiser, T., A. Lusardi, L. Menkhoff, and C. Urban, 2022. “Financial Education Affects Financial Knowledge and Downstream Behaviors”, Journal of Financial Economics, 145(2): 255~272.
[42]Khor, N., and J. Pencavel, 2006. “Income Mobility of Individuals in China and the United States”, Economics of Transition, 14(3): 417~458.
[43]Korinek, A., and J. E. Stiglitz, 2018. “Artificial Intelligence and Its Implications for Income Distribution and Unemployment,” The Economics of Artificial Intelligence: An agenda. University of Chicago Press, 349-390.
[44]Liu, Y., and J. Mao, 2019. “How Do Tax Incentives Affect Investment and Productivity? Firm-Level Evidence from China”, American Economic Journal: Economic Policy, 11(3): 261~291.
[45]Schumpeter, J., 1955. “Imperialism and Social Classes”, Cleveland: The World Publishing Company, 124~134.
[46]Shi, X., X. Liu, A. Nuetah, and X. Xin, 2010. “Determinants of Household Income Mobility in Rural China”, China & World Economy, 18(2): 41~59.
[1] 王正位, 邓颖惠, 廖理. 知识改变命运:金融知识与微观收入流动性[J]. 金融研究, 2016, 438(12): 111-127.
[1] 谭莹, 王盼, 张勋. 数字金融发展的劳动力迁移效应——来自中国家庭追踪调查的微观证据[J]. 金融研究, 2024, 532(10): 39 -57 .
[2] 陈福中, 罗科, 董康银. 外资退出与产业链风险敞口测算[J]. 金融研究, 2024, 533(11): 20 -37 .
[3] 许楠, 毛奕欢, 刘浩. 经营预算信息链式传递与供应链长鞭效应——基于信息溢出与风险自治的视角[J]. 金融研究, 2024, 533(11): 38 -56 .
[4] 魏浩, 封起扬帆. 进口竞争、创新风险与创新质量——基于单一企业和企业集团的再考察[J]. 金融研究, 2024, 533(11): 57 -75 .
[5] 陈学彬, 李鑫. 关联网络视角下的国际外汇市场汇率风险溢出研究[J]. 金融研究, 2024, 530(8): 20 -38 .
[6] 温慧愉, 杜佳月, 高昊宇, 李欣明. 碳市场激励下的企业ESG表现——来自中国碳排放权交易试点的经验证据[J]. 金融研究, 2024, 532(10): 95 -112 .
[7] 孙浦阳, 杨易擎, 蒋殿春. 批发业外资开放、供应链整合与消费福利——基于微观视角的理论与经验分析[J]. 金融研究, 2024, 532(10): 113 -131 .
[8] 余静文, 李媛媛, 谭静, 王勋. 数字经济背景下的共同富裕实现机制研究——基于流动人口视角的诠释[J]. 金融研究, 2024, 532(10): 20 -38 .
[9] 张浩, 谭雯倩, 韩永辉. 境外投资者持股缓解了控股股东掏空行为吗?[J]. 金融研究, 2024, 532(10): 151 -168 .
[10] 李青原, 李厚渊, 胡龙吟. 多模态会计信息与投资者关注——来自上市公司官方微博的证据[J]. 金融研究, 2024, 532(10): 188 -206 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1