Please wait a minute...
金融研究  2024, Vol. 531 Issue (9): 95-113    
  本期目录 | 过刊浏览 | 高级检索 |
空气质量、产业协同与城市群内房价溢出效应
方意, 袁琰, 王晏如
中国人民大学国家发展与战略研究院, 北京 100872;
香港中文大学(深圳)经济管理学院, 广东深圳 518172;
东北财经大学金融学院, 辽宁大连 116025
Air Pollution and House Price Spillovers in Chinese cities
FANG Yi, YUAN Yan, WANG Yanru
National Academy of Development and Strategy, Renmin University of China;
School of Management and Economics, The Chinese University of Hong Kong, Shenzhen;
School of Finance, Dongbei Univerisy of Finance and Economics
下载:  PDF (1221KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 在国家持续推进空气质量全面改善工作的背景下,本文从城市群视角出发构建城市房价溢出指标,从时间和空间两个维度分析该指标的演进和分布规律,实证检验城市空气污染对自身房价溢出效应的作用效果和影响路径。时间维度分析发现,本文房价溢出指标能够从网络节点同步性角度衡量房地产市场风险。空间维度分析发现,城市群整体的房价溢出状况可能与自身地理面积、空间紧密度和内部城市经济发展水平差距等因素有关,且中心大城市大多是系统重要性城市。从作用效果来看,本文发现城市空气质量的恶化平均而言会降低自身房价,且会对相邻一片区域内的城市施加一个共同的负面冲击,进而提高房价溢出效应。从影响路径来看,物理扩散和产业协同被验证为是空气污染影响城市房价溢出效应的两个重要路径。此外,本文还发现,中国过去环境保护政策的实施起到了显著的空气污染防治效果,间接对维护我国房地产市场稳定起到了显著正面作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方意
袁琰
王晏如
关键词:  空气污染  房价溢出  房价同步性  系统性风险  环境金融风险    
Summary:  in recent years, The global climate and environment have been deteriorating continuously, bringing huge negative impacts on the economic development and financial stability of various countries and drawing the world's attention. This paper takes the most common environmental shock (air pollution) and the financial sub-market most closely related to air pollution (the real estate market) as its research objects, using samples of 150 cities within 8 major urban agglomerations in China from July 2010 to December 2021 to study the impact of air pollution on the risks of urban real estate markets. Specifically, this paper, referring to Silva-Buston (2019), constructs synchronism indicators that reflect the connectivity between the house price return of one city and that of the other cities within the same urban agglomeration for 8 major urban agglomerations respectively, and uses the indicators to measure house price spillovers. Then, this paper conducts an analysis of the validity of indicators, analyzing the evolution and distribution laws of core indicators from both time and spatial dimensions. Next, this paper adopts a panel regression model to examine the impact of the Air Quality Index(AQI) of a city on its own house price spillover, and replaces the independent variable and dependent variable respectively for robustness tests. This paper also uses instrumental variables to alleviate the possible endogeneity problem, and tests the existence of the two impact paths, physical diffusion and industrial synergy, by group-based regression. Finally, this paper empirically evaluates the effects of China's past environmental protection policies on air pollution control and financial stability.
The spillover indicators constructed in this paper perform in line with the real-world experience in both time and spatial dimensions, and the validity of the indicators has been largely verified. Time dimension analysis reveals that the constructed house price spillover indicators can provide additional information for measuring real estate market risks from the perspective of network node synchrony. Spatial dimension analysis finds that the overall housing price spillovers of urban agglomerations may be related to factors such as their own geographical area, spatial compactness, and the gap in the economic development level of internal cities, where most central and large cities are systemically important. The regression results indicate that the deterioration of urban air quality will lead to a decline in urban house prices and an increase in the urban house price spillover effect. On average, for every one standard deviation increase in the urban air pollution, the urban house price return will decrease by 12.29%, and the urban house price spillover will increase by 22.74%. This result might be because air pollutants emitted by a certain city will impose a common negative shock on the cities in the adjacent area, thereby increasing its own house price spillover. After conducting the robustness test and the endogeneity test, we find that the baseline results in this paper are very robust. Moreover, it has been empirically verified that physical diffusion and industrial synergy are two important paths through which air pollution affects the urban house price spillover. We also find that the implementation of environmental protection policies in China in the past has played a positive role in maintaining financial stability.
This paper has the following three contributions. Firstly, compared with many existing studies that investigate the impact of air pollution on house price or house price volatility from the perspective of a single city, this paper studies the impact of air pollution on house price spillover from the perspective of overall synchronicity, focusing on analyzing the network spillover mechanism of real estate market risk caused by air pollution. Thus, our study provides a supplement to the research in the field of real estate market risk. Secondly, this paper analyzes and verifies two mechanisms by which air pollution affects the spillover effect of urban house pncing, namely physical diffusion and industrial synergy. Specifically, the physical diffusion mechanism refers to the connectivity of real estate markets among cities caused by the diffusion of air pollutants avnong cities through meteorological factors. The industrial synergy mechanism refers to the phenomenon that under the industrial division of urban agglomeration, big cities are responsible for the production with high added value and low pollution, while small cities are responsible for the production with low added value and high pollution, which leads to the simultaneous change of urban air quality in the face of market demand and collaborative production. This paper has reference significance for alleviating the spatial negative externalities of air pollution through regional collaborative governance. Finally, this paper constructs urban house price spillover indicator that capture the characteristics of the house price network in urban agglomerations with low data frequency ceqvirements. Referring to Silva-Buston (2019), this paper uses the regression method to estimate the mean dependence of house prices among cities in the network. The indicator construction has almost no model risk and requires low data frequency, which enables this paper to include all 150 cities that meet the requirements of data availability in the 8 major urban agglomerations as research samples, and almost completely retain the internal hierarchical structure of each urban agglomeration.
Keywords:  Air Pollution    House Price Spillovers    House Price Synchronization    Systemic Risk    Environmental Financial Risk
JEL分类号:  C23   P25   Q53  
基金资助: * 本文感谢国家社会科学基金重大项目(23&ZD058)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  袁琰,博士研究生,香港中文大学(深圳)经济管理学院,E-mail:yuanyan48@126.com.   
作者简介:  方意,经济学博士,教授,中国人民大学国家发展与战略研究院,E-mail:fangyi@ruc.edu.cn.王晏如,经济学博士,讲师,东北财经大学金融学院,E-mail:wangyanru628@126.com.
引用本文:    
方意, 袁琰, 王晏如. 空气质量、产业协同与城市群内房价溢出效应[J]. 金融研究, 2024, 531(9): 95-113.
FANG Yi, YUAN Yan, WANG Yanru. Air Pollution and House Price Spillovers in Chinese cities. Journal of Financial Research, 2024, 531(9): 95-113.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V531/I9/95
[1] 白雪洁,2022,《中国新一轮产业转移:动因、特征与举措》,《国家治理》第15期,第27~31页。
[2] 陈诗一和陈登科,2018,《雾霾污染、政府治理与经济高质量发展》,《经济研究》第2期,第20~34页。
[3] 陈雨露,2020,《当前全球中央银行研究的若干重点问题》,《金融研究》第2期,第1~14页。
[4] 陈英楠、莫东翠、唐思华和李慧慧,2022,《测量中国房地产政策不确定性研究》,《经济学(季刊)》第2期,第405~424页。
[5] 方意,2021,《前瞻性与逆周期性的系统性风险指标构建》,《经济研究》第9期,第191~208页。
[6] 方意和荆中博,2022,《外部冲击下系统性金融风险的生成机制》,《管理世界》第5期,第19~46+71页。
[7] 韩钰和臧传琴,2020,《绿色金融、环境规制与污染密集型产业的区域差异分析——基于1995—2017年的区域面板数据》,《农村金融研究》第5期,第64~71页。
[8] 江艇,2022,《因果推断经验研究中的中介效应与调节效应》,《中国工业经济》第5期,第100~120页。
[9] 马丽梅和张晓,2014,《中国雾霾污染的空间效应及经济、能源结构影响》,《中国工业经济》第4期,第19~31页。
[10] Broner, F., P. Bustos and V. M. Carvalho, 2012, “Sources of Comparative Advantage in Polluting Industries”, NBER Working Paper, No.18337.
[11] Cotter, J., G. Stuart and R. Richard, 2015, “Can Housing Risk be Diversified? A Cautionary Tale from the Housing Boom and Bust”, Review of Financial Studies, 28(3), pp.913~936.
[12] Heyes, A. and M. Zhu, 2019, “Air Pollution as a Cause of Sleeplessness: Social Media Evidence from a Panel of Chinese Cities”, Journal of Environmental Economics and Management, 98.
[13] Jones, C. and C. Leishman, 2006, “Spatial Dynamics of the Housing Market: An Interurban Perspective”, Urban Studies, 43(7), pp.1041~1059.
[14] Jordà, Ò., M. Schularick, A. M. Taylor and F. Ward, 2019, “Global Financial Cycles and Risk Premiums”, IMF Economic Review, 67(1).
[15] Silva-Buston, C., 2019, “Systemic Risk and Competition Revisited”, Journal of Banking & Finance, 101(C), pp.188~205.
[16] Yang, J., Z. Yu and Y. Deng, 2018, “Housing Price Spillovers in China:A high-dimensional Generalized VAR Approach”, Regional Science and Urban Economics, 68, pp.98~114.
[17] Yang, J., M. Tong and Z. Yu, 2021, “Housing Market Spillovers through the Lens of Transaction Volume: A New Spillover Index Approach”, Journal of Empirical Finance, 64, pp.351~378.
[1] 王熙, 黄德金, 高明. 波动率指数与价格发现——基于中国市场的理论拓展[J]. 金融研究, 2024, 530(8): 113-131.
[2] 方意, 和文佳, 王琦. 非核心负债业务、流动性渠道和银行业系统性风险:理论模型与经验分析[J]. 金融研究, 2024, 525(3): 20-37.
[3] 范中杰, 何平, 刘泽豪. 风险传染、银行间市场骤冷及防范化解政策——基于金融网络模型视角[J]. 金融研究, 2024, 524(2): 38-56.
[4] 刘孟鑫, 许敬轩, 马光荣. 空气污染与企业人力资本结构升级 ——基于逆温现象IV估计的实证检验[J]. 金融研究, 2023, 517(7): 154-172.
[5] 李志辉, 朱明皓, 李源, 李政. 我国金融机构的系统性风险溢出研究:测度、渠道与防范对策[J]. 金融研究, 2023, 514(4): 55-73.
[6] 杨子晖, 张平淼, 林师涵. 系统性风险与企业财务危机预警——基于前沿机器学习的新视角[J]. 金融研究, 2022, 506(8): 152-170.
[7] 张伟平, 曹廷求. 中国房地产企业间系统性风险溢出效应分析——基于尾部风险网络模型[J]. 金融研究, 2022, 505(7): 94-114.
[8] 张琳, 廉永辉, 方意. 政策连续性与商业银行系统性风险[J]. 金融研究, 2022, 503(5): 95-113.
[9] 王永钦, 段白鸽, 钱佳辉. 中国的“影子保险”:来自监管自然实验的证据[J]. 金融研究, 2022, 502(4): 18-38.
[10] 赵静, 郭晔. 金融产品持股与银行系统性风险——兼论《商业银行股权管理暂行办法》的影响[J]. 金融研究, 2022, 499(1): 57-75.
[11] 徐国祥, 吴婷, 王莹. 基于共同冲击和异质风险叠加传导的风险传染研究——来自中国上市银行网络的传染模拟[J]. 金融研究, 2021, 490(4): 38-54.
[12] 陈国进, 蒋晓宇, 刘彦臻, 赵向琴. 资产透明度、监管套利与银行系统性风险[J]. 金融研究, 2021, 489(3): 18-37.
[13] 王辉, 梁俊豪. 基于动态因子Copula模型的我国银行系统性风险度量[J]. 金融研究, 2020, 485(11): 58-75.
[14] 李政, 梁琪, 方意. 中国金融部门间系统性风险溢出的监测预警研究——基于下行和上行ΔCoES指标的实现与优化[J]. 金融研究, 2019, 464(2): 40-58.
[15] 方意, 王晏如, 黄丽灵, 和文佳. 宏观审慎与货币政策双支柱框架研究——基于系统性风险视角[J]. 金融研究, 2019, 474(12): 106-124.
[1] 肖欣荣, 周晏伊. 中国A股涨跌停交易制度与投资者处置效应[J]. 金融研究, 2024, 531(9): 153 -170 .
[2] 叶帅, 张劲帆, 郑凯轩. 中国新基金过度发行之谜和投资者保护[J]. 金融研究, 2024, 531(9): 171 -188 .
[3] 王熙, 黄德金, 高明. 波动率指数与价格发现——基于中国市场的理论拓展[J]. 金融研究, 2024, 530(8): 113 -131 .
[4] 宋芳秀, 宋奎壁. 公众异质预期、信息成本与货币政策传导[J]. 金融研究, 2024, 529(7): 1 -19 .
[5] 沈艳, 江弘毅, 胡诗云, 赵家琪, 黄卓. 数字金融支持高质量发展:理论、机制和证据[J]. 金融研究, 2024, 529(7): 20 -39 .
[6] 栾稀, 朱浣君, 彭雨洁, 徐奇渊. 地缘政治冲击下的主权债务风险:溢出效应和传导渠道[J]. 金融研究, 2024, 530(8): 1 -19 .
[7] 陈学彬, 李鑫. 关联网络视角下的国际外汇市场汇率风险溢出研究[J]. 金融研究, 2024, 530(8): 20 -38 .
[8] 李政, 李薇, 李丽雯. 美国三类不确定性冲击、生产网络传导与中国行业尾部风险[J]. 金融研究, 2024, 530(8): 39 -57 .
[9] 欧阳远芬, 王秋实. 基于隐性担保和显性担保比较的城投债定价研究[J]. 金融研究, 2024, 530(8): 77 -94 .
[10] 杨娇辉, 王伟, 冯云. 经济政策不确定性、国家宏观风险与国际证券投资[J]. 金融研究, 2024, 530(8): 58 -76 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1