Please wait a minute...
金融研究  2024, Vol. 531 Issue (9): 114-133    
  本期目录 | 过刊浏览 | 高级检索 |
信息不对称、碳数据质量与碳减排政策选择——兼论中国碳市场的高质量发展
张一林, 蔡桢, 郁芸君
中山大学岭南学院/高级金融研究院,广东广州 510275;
中山大学商学院,广东深圳 518107;
中南财经政法大学文澜学院,湖北武汉 430073
Asymmetric Information, Carbon Data Manipulation, and Policy Choices for Carbon Reduction: Insights into the High-Quality Development of China's Carbon Market
ZHANG Yilin, CAI Zhen, YU Yunjun
Lingnan College, Advanced Institute of Finance, Sun Yat-Sen University;
Business School, Sun Yat-Sen University;
Wenlan School of Business, Zhongnan University of Economics and Law
下载:  PDF (1011KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着“双碳”战略不断推进,一些控排企业可能捏造碳排放数据以节约减排成本。如何构建既能防范碳数据失真风险、又能有效激励企业减排的政策体系,是学术界和实务界亟待解决的新问题。本文基于一个包含政府和异质性企业的委托代理模型,将企业碳数据造假决策内生化,研究当政府观察不到企业的减排成本、也难以确定企业碳排放数据的真实性时,命令型政策和市场型政策的减排效果、最优政策优化与政策选择。研究发现,市场型政策在碳数据容错性、减少碳排放造假量、控制社会碳排放总量和提升社会总福利方面均优于命令型政策,政府应坚定不移地持续推动命令型政策向市场型政策转型。但在政策转型过程中,仍不能忽视碳数据失真风险:一方面,碳数据造假会扭曲碳市场定价,并降低碳市场的活跃程度;另一方面,在政策转型的过程中,减排主力企业的碳数据造假动机可能较转型前增加。本文研究对于前瞻性地防范碳数据失真风险以及推动碳市场高质量发展具有启示意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张一林
蔡桢
郁芸君
关键词:  碳数据失真  碳交易  碳定价    
Summary:  At the 75th United Nations General Assembly, China solemnly committed to the international community to achieve carbon peaking by 2030 and carbon neutrality by 2060. Under this “dual carbon” target, a major challenge facing China is promoting a comprehensive green and low-carbon transition among enterprises and continuously advancing carbon emission control and reduction. The government typically adopts environmental regulatory policies to manage corporate carbon emissions, primarily employing two types of policy tools: The first is command-and-control policies, represented by the “dual control of energy consumption,” in which administrative authorities enforce emissions reduction based on laws, regulations, and standards. The second type is market-based policies centered on carbon emissions trading.
In practice, due to difficulties in accurately obtaining each firm's carbon emissions and abatement costs, as well as deficiencies in the Monitoring, Reporting, and Verification (MRV) system, regulated firms may manipulate carbon emission data to conceal their actual emissions—referred to here as “carbon emission fraud”—resulting in a discrepancy between the observed emissions data and the actual emissions.
Faced with the potential risks of carbon emission manipulation, how should the government set the policy parameters for command-and-control and market-based policies, including emissions caps and penalties for excess emissions? Which policy tool is more effective in curbing firms' incentives for carbon data manipulation and achieving better emission reduction outcomes? To address these questions, this paper constructs a principal-agent model involving the government and heterogeneous firms, under conditions of asymmetric information where the government cannot observe firms' low-carbon transition costs or actual emissions. The model endogenizes firms' decision-making on carbon emission fraud to facilitate the subsequent analysis.
The study finds that market-based policies achieve greater resilience to carbon data distortion and higher social welfare These have two additional comparative advantages. First, market-based policies exhibit greater tolerance for carbon data distortion. Under market-based policies, even if the government does not explicitly account for the potential for data manipulation or firms' fraudulent motives, social welfare is not significantly compromised. Second, market-based policies result in lower total hidden carbon emissions compared to command-and-control policies.
Furthermore, we find that carbon markets have heterogeneous impacts on firms' motivations for carbon data manipulation. For firms on the demand side of the carbon market—those at a comparative disadvantage in abatement costs—the “cost-saving effect” brought by purchasing carbon allowances effectively reduces their incentives for fraud. On the other hand, for firms on the supply side—those with a comparative advantage in abatement costs—the “revenue-generating effect” from selling allowances strengthens their incentive to falsify carbon data.
Based on these findings, this paper makes three policy recommendations. First, accelerate the transition from command-and-control policies to market-based policies and expand the coverage of the carbon market. Second, optimize policy parameters and strengthen carbon data governance. During the transition from command-and-control to market-based policies, carbon reduction policy design should be adapted to the risk of carbon leakage. Moreover, given that carbon emission fraud risks cannot be eliminated by adjusting policy parameters, the government should prioritize carbon data quality, prevent carbon leakage arising from data falsification and production relocation, and continually improve the MRV system.
Third, enhance the intensity and scope of regulation regarding carbon data distortion in the carbon market. As the government promotes policy transition, it should simultaneously strengthen carbon data governance. In terms of regulatory targets, the government should not only oversee firms without a comparative advantage in green innovation but also focus on those with such an advantage, as the revenue-generating effect of the carbon market may increase the incentives for carbon emission manipulation among the latter group.
Keywords:  Carbon data manipulation    Carbon Data Distortion    Carbon Emission Trade    Carbon Pricing
JEL分类号:  Q53   Q58   D21  
基金资助: * 本文感谢广东省自然科学基金杰出青年项目(2023B1515020068)和国家自然科学基金重点项目(72132010)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  郁芸君,经济学博士,副教授,中南财经政法大学文澜学院,E-mail:yuyunjun@zuel.edu.cn.   
作者简介:  张一林,经济学博士,副教授,中山大学岭南学院/高级金融研究院,zhangylin29@mail.sysu.edu.cn.蔡桢,博士研究生,中山大学商学院,E-mail:caizh26@mail2.sysu.edu.cn.
引用本文:    
张一林, 蔡桢, 郁芸君. 信息不对称、碳数据质量与碳减排政策选择——兼论中国碳市场的高质量发展[J]. 金融研究, 2024, 531(9): 114-133.
ZHANG Yilin, CAI Zhen, YU Yunjun. Asymmetric Information, Carbon Data Manipulation, and Policy Choices for Carbon Reduction: Insights into the High-Quality Development of China's Carbon Market. Journal of Financial Research, 2024, 531(9): 114-133.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V531/I9/114
[1] 胡珺、黄楠和沈洪涛,2020,《市场激励型环境规制可以推动企业技术创新吗?——基于中国碳排放权交易机制的自然实验》,《金融研究》第1期,第171~189页。
[2] 陆菁、鄢云和黄海先,2022,《规模依赖型节能政策的碳泄漏效应研究》,《中国工业经济》第9期,第64~82页。
[3] 孙晓华、车天琪和马雪娇,2023,《企业碳信息披露的迎合行为:识别、溢价损失与作用机制》,《中国工业经济》第1期,第132~150页。
[4] 王班班和齐绍洲,2016,《市场型和命令型政策工具的节能减排技术创新效应——基于中国工业行业专利数据的实证》,《中国工业经济》第6期,第91~108页。
[5] 王博和徐飘洋,2021,《碳定价、双重金融摩擦与‘双支柱’调控》,《金融研究》第12期,第57~74页。
[6] 王红梅,2016,《中国环境规制政策工具的比较与选择——基于贝叶斯模型平均(BMA)方法的实证研究》,《中国人口·资源与环境》第9期,第132~138页。
[7] 吴茵茵、齐杰、鲜琴和陈建东,2021,《中国碳市场的碳减排效应研究——基于市场机制与行政干预的协同作用视角》,《中国工业经济》第8期,第114~132页。
[8] 叶琴、曾刚、戴劭勍和王丰龙,2018,《不同环境规制工具对中国节能减排技术创新的影响——基于285个地级市面板数据》,《中国人口·资源与环境》第2期,第115~122页。
[9] 曾诗鸿、贾婧敏、姚树洁和钟震,2023,《基于Copula模型的中国碳市场叠加风险度量》,《金融研究》第3期,第93~111页。
[10] 赵思琦、刘庆富、杨金强和李源,2023,《全国碳市场的碳排放权配额管理机制设计——基于碳交易和风险对冲的视角》,《金融研究》第12期,第74~93页。
[11] Alesina, A. and Passarelli, F., 2014, “Regulation versus Taxation”, Journal of Public Economics, 110, pp.147~156.
[12] Atkinson S. E., and D. H. Lewis, 1974, “Cost-effectiveness Analysis of Alternative Air Quality Control Strategies”, Journal of Environmental Economics and Management, 1(3), pp.237~250.
[13] Baumol W. J., and W. E. Oates, 1971, “The Use of Standards and Prices for Protection of the Environment”, The Economics of Environment: Papers from Four Nations, pp.53~65.
[14] Baumol, W. J., W. J. Baumol, W. E. Oates,,V. S. Bawa, W. S. Bawa, D. F. Bradford, and W. J. Baumol, 1988, The Theory of Environmental Policy, Published by Cambridge University Press.
[15] Cerqua, A., G. Pellegrini, and O. Tarola, 2020, “Quality Competition and Environmental Damage: Is There a Role for Network Preferences?”, Journal of Cleaner Production, 266: 121603.
[16] Chen, Y., G. Z. Jin, N. Kumar, and G. Shi, 2012, “Gaming in Air Pollution Data? Lessons from China”, BE Journal of Economic Analysis & Policy, 13(3).
[17] Cheng Z., L. Li, and J. Liu, 2017, “The Emissions Reduction Effect and Technical Progress Effect of Environmental Regulation Policy Tools”, Journal of Cleaner Production, 149, pp.191~205.
[18] Dales J. H., Pollution, 2002, Property & Prices:An Essay in Policy-Making and Economics. Published by Edward Elgar Publishing.
[19] Duflo, E., M. Greenstone, R. Pande, and N. Ryan, 2013, “Truth-Telling by Third-party Auditors and the Response of Polluting Firms: Experimental Evidence from India”, Quarterly Journal of Economics,128(4), pp.1499~1545.
[20] Ghanem D., and J. Zhang, 2014, “Effortless Perfection: Do Chinese Cities Manipulate Air Pollution Data?”, Journal of Environmental Economics and Management, 68(2), pp.203~225.
[21] Goulder L. H., and I. W. H. Parry, 2008, “Instrument Choice in Environmental Policy”, Review of Environmental Economics and Policy, 2(2), pp.152~174.
[22] Harrison, A., B. Hyman, L. Martin, and S. Nataraj, 2015, When Do Firms Go Green? Comparing Price Incentives with Command and Control Regulations in India. Cambridge, MA, USA: National Bureau of Economic Research.
[23] Heyes A., 2000, “Implementing Environmental Regulation: Enforcement and Compliance”, Journal of Regulatory Economics, 17(2), pp.107~130.
[24] Karplus V. J., S. Zhang, and D. Almond, 2018, “Quantifying Coal Power Plant Responses to Tighter SO2 Emissions Etandards in China”, Proceedings of the National Academy of Sciences, 115(27), pp.7004~7009.
[25] Meunier, G., Ponssard, J. P. and Quirion, P., 2014, “Carbon Leakage and Capacity-based Allocations: Is the EU Right?”, Journal of Environmental Economics and Management, 68(2), pp.262~279.
[26] Newell R. G, and Pizer W. A., 2003, “Regulating Stock Externalities under Uncertainty”, Journal of Environmental Economics and Management, 45(2), pp.416~432.
[27] Ribeiro, F. D. M. and I. Kruglianskas, 2015, “Principles of Environmental Regulatory Quality: A Synthesis from Literature Review”, Journal of Cleaner Production, 96, pp.58~76.
[28] Schreifels J. J., Y.Fu, and E. J. Wilson, 2012, “Sulfur Dioxide Control in China: Policy Evolution during the 10th and 11th Five-year Plans and Lessons for the Future”, Energy Policy, 48, pp.779~789.
[29] Stavins, R. N., 2007, “Environmental Economics”, NBER Working Paper, 13574.
[30] Testa F., Iraldo F., and M. Frey, 2011, “The Effect of Environmental Regulation on Firms' Competitive Performance: The Case of the Building & Construction Sector in Some EU Regions”, Journal of Environmental Management, 92(9), pp.2136~2144.
[31] Weitzman M. L., 1974, “Prices vs. Quantities”, Review of Economic Studies, 41(4), pp.477~491.
[32] Xu Y., 2011, “Improvements in the Operation of SO2 Scrubbers in China's Coal Power Plants”, Environmental Science & Technology, 45(2), pp.380~385.
[33] Zhang, P., Yin, G. and Duan, M., 2020, “Distortion Effects of Emissions Trading System on Intra-sector Competition and Carbon Leakage: A Case Study of China”, Energy Policy, 137, pp.111~126.
[34] Zhang, Y. J., Y. L. Peng, C. Q. Ma, and B. Shen, 2017, “Can Environmental Innovation Facilitate Carbon Emissions Reduction? Evidence from China”, Energy Policy, 100, pp.18~28.
[35] Zhao X., H. Yin, and Y. Zhao, 2015(a), “Impact of Environmental Regulations on the Efficiency and CO2 Emissions of Power Plants in China”, Applied Energy, 149, pp.238~247.
[36] Zhao, X., Y. Zhao, S. Zeng, and S. Zhang, 2015(b), “Corporate Behavior and Competitiveness: Impact of Environmental Regulation on Chinese Firms”, Journal of Cleaner Production, 86, pp.311~322.
[37] Zhou, B., C. Zhang, H. Song, and Q.Wang, 2019, “How does Emission Trading Reduce China's Carbon Intensity? An Exploration Using a Decomposition and Difference-in-differences Approach”, Science of the Total Environment, 676, pp.514~523.
[1] 赵思琦, 刘庆富, 杨金强, 李源. 全国碳市场的碳排放权配额管理机制设计——基于碳交易和风险对冲的视角[J]. 金融研究, 2023, 522(12): 74-93.
[2] 王博, 徐飘洋. 碳定价、双重金融摩擦与“双支柱”调控[J]. 金融研究, 2021, 498(12): 57-74.
[1] 肖欣荣, 周晏伊. 中国A股涨跌停交易制度与投资者处置效应[J]. 金融研究, 2024, 531(9): 153 -170 .
[2] 叶帅, 张劲帆, 郑凯轩. 中国新基金过度发行之谜和投资者保护[J]. 金融研究, 2024, 531(9): 171 -188 .
[3] 王熙, 黄德金, 高明. 波动率指数与价格发现——基于中国市场的理论拓展[J]. 金融研究, 2024, 530(8): 113 -131 .
[4] 宋芳秀, 宋奎壁. 公众异质预期、信息成本与货币政策传导[J]. 金融研究, 2024, 529(7): 1 -19 .
[5] 沈艳, 江弘毅, 胡诗云, 赵家琪, 黄卓. 数字金融支持高质量发展:理论、机制和证据[J]. 金融研究, 2024, 529(7): 20 -39 .
[6] 栾稀, 朱浣君, 彭雨洁, 徐奇渊. 地缘政治冲击下的主权债务风险:溢出效应和传导渠道[J]. 金融研究, 2024, 530(8): 1 -19 .
[7] 陈学彬, 李鑫. 关联网络视角下的国际外汇市场汇率风险溢出研究[J]. 金融研究, 2024, 530(8): 20 -38 .
[8] 李政, 李薇, 李丽雯. 美国三类不确定性冲击、生产网络传导与中国行业尾部风险[J]. 金融研究, 2024, 530(8): 39 -57 .
[9] 欧阳远芬, 王秋实. 基于隐性担保和显性担保比较的城投债定价研究[J]. 金融研究, 2024, 530(8): 77 -94 .
[10] 杨娇辉, 王伟, 冯云. 经济政策不确定性、国家宏观风险与国际证券投资[J]. 金融研究, 2024, 530(8): 58 -76 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1