Please wait a minute...
金融研究  2020, Vol. 477 Issue (3): 134-151    
  本期目录 | 过刊浏览 | 高级检索 |
P2P借款人的定价偏差与被动违约风险——基于“人人贷”数据的分析
封思贤, 那晋领
南京师范大学商学院,江苏南京 210023;
南京大学经济学院,江苏南京 210093
Pricing Deviation and Passive Default Risk of Peer-to-Peer Borrowers: An Analysis Based on Transaction Data from Renrendai.com
FENG Sixian, NA Jinling
School of Business, Nanjing Normal University; School of Economics, Nanjing University
下载:  PDF (556KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文主要通过行为资产定价理论和“人人贷”2014—2018年的数据,研究网络借贷(P2P)借款人定价偏差的影响因素及其与被动违约风险之间的关系。定价偏差是将P2P借贷利率分解为效率部分和无效率部分,并通过成本随机前沿模型得到。结果表明:借款人定价存在显著偏差且在不同群体间有所差异;借款人的粉饰行为未能起到减小定价偏差的作用,甚至会起到反效果;当借款人的声誉成本高于还款成本时,此时的违约主要表现为被动违约;即使借款人主观还款意愿强烈,但定价偏差越大,借款人剩余收入就越吃紧,还款过程中逾期次数和欠债比例增加的可能性就越大,进而引发被动违约风险。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
封思贤
那晋领
关键词:  网络借贷(P2P)  定价偏差  被动违约  违约风险  粉饰行为    
Summary:  China's P2P (peer-to-peer) online lending industry has experienced numerous twists and turns in its development process, during which there have been several serious platform crises that have hindered the healthy development of the industry. Default risk has become an unavoidable problem, resulting in the loss of capital allocation efficiency in the industry. Previous studies have focused on active defaults, in which borrowers intentionally or strategically default despite having the ability to repay; passive defaults have been discussed less frequently. On many P2P platforms, borrowers can independently set borrowing rates in advance and make loan orders. Due to their relatively weak bargaining skills, borrowers are likely to produce pricing deviation, causing an unexpected rise of repayment pressure. When the pressure exceeds the borrower's ability, the borrower will have to default. This paper argues that even if there is no active default intention, excessive pricing deviation will often break the borrower's income balance and lead to passive default. We further propose that the borrower, as the party with more information, will try to reduce pricing deviation through information whitewashing and reverse his/her inferior position to obtain a larger bargaining surplus. We therefore study the characteristics of this behavior and investors' reaction to it.
   In the theoretical part, based on behavior asset pricing theory and the pricing mechanism of Renrendai.com, this paper explores the reasons for pricing deviation. In an attempt to obtain a lower borrowing rate, borrowers may use unverifiable soft information; consequently, this paper discusses information whitewashing. Considering reputation cost and income balance, this paper also analyzes the relationship between pricing deviation and default risk.
   In the empirical part, with data from Renrendai.com from 2014 to 2018, this paper studies the factors influencing the pricing deviation of peer-to-peer borrowers and the relationship between pricing deviation and passive default risk. Pricing deviation is obtained through a stochastic frontier approach by dividing interest rate into an efficient part and an inefficient part. The paper finds substantial pricing deviation among borrowers, which varies between different groups. Borrowers' whitewashing fails to reduce pricing bias and may even backfire. Furthermore, when the borrower's reputation cost is higher than the lending rate, defaults are mainly passive. Even if the borrower does not actively intend to default, the greater the pricing deviation, the tighter the borrower's remaining income, and the greater the likelihood that the number of overdue payments and the proportion of debt owed will increase, which leads to greater risk of passive default.
   Based on these empirical results, this paper makes several suggestions. First, the rate pricing mechanism should be improved, which means that rate flexibility should be increased and P2P interest rate marketization should be promoted. Second, information disclosure should be strengthened and information standardization should be implemented. Finally, it is necessary to improve default risk control, understand borrowers' motivations, reduce the probability of passive default, and improve the efficiency of capital allocation.
   Our study contributes to the literature in the following ways. First, the cost stochastic frontier (SFA) is used to construct the pricing deviation index. In contrast to the literature, this construction method comprehensively considers loan availability and the post-loan default risk of a loan order, which classifies the optimal interest rate and pricing deviation more objectively and reasonably. Second, focusing on the limits of platform information verification, this paper investigates the information whitewashing behavior of borrowers and the reaction of investors, and it reveals the information transmission and bargaining mechanism of both parties on the platform. Third, it outlines the reasons for borrowers' passive default, examines the relationship between pricing deviation and passive default, and enriches the risk control strategy of P2P platforms.
Keywords:  Peer-to-peer Lending    Pricing Deviation    Passive Default    Default Risk    Information Whitewashing
JEL分类号:  E43   G02   G14  
通讯作者:  那晋领,金融学博士生,南京大学经济学院,E-mail:johnnyna@126.com.   
作者简介:  封思贤,经济学博士,教授,南京师范大学商学院、金陵女子学院,E-mail:fsixian@sina.com.
引用本文:    
封思贤, 那晋领. P2P借款人的定价偏差与被动违约风险——基于“人人贷”数据的分析[J]. 金融研究, 2020, 477(3): 134-151.
FENG Sixian, NA Jinling. Pricing Deviation and Passive Default Risk of Peer-to-Peer Borrowers: An Analysis Based on Transaction Data from Renrendai.com. Journal of Financial Research, 2020, 477(3): 134-151.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2020/V477/I3/134
[1] 陈霄和叶德珠,2016,《定价效率、不确定性与借款利率——来自P2P网络借贷的经验证据》,《国际商务(对外经济贸易大学学报)》第5期,第113~122页。
[2] 方先明和高爽,2018,《上市公司管理层修正公告披露策略的市场反应》,《中国工业经济》第2期,第176~192页。
[3] 郭峰,2016,《网络昵称与P2P借贷的成功率和违约率》,《经济科学》第6期,第102~116页。
[4] 何启志和彭明生,2016,《基于互联网金融的网贷利率特征研究》,《金融研究》第10期,第95~110页。
[5] 李双杰、王林和范超,2007,《统一分布假设的随机前沿分析模型》,《数量经济技术经济研究》第4期,第84~91页。
[6] 廖理、吉霖和张伟强,2015,《借贷市场能准确识别学历的价值吗?——来自P2P平台的经验证据》,《金融研究》第3期,第146~159页。
[7] 廖理、李梦然和王正位,2014,《聪明的投资者:非完全市场化利率与风险识别——来自P2P网络借贷的证据》,《经济研究》第7期,第125~137页。
[8] 彭红枫、赵海燕和周洋,2016,《借款陈述会影响借款成本和借款成功率吗?——基于网络借贷陈述的文本分析》,《金融研究》第4期,第158~173页。
[9] 苏治和胡迪,2014,《农户信贷违约都是主动违约吗?——非对称信息状态下的农户信贷违约机理》,《管理世界》第9期,第77~89页。
[10] 王会娟和廖理,2014,《中国P2P网络借贷平台信用认证机制研究——来自“人人贷”的经验证据》,《中国工业经济》第4期,第136~147页。
[11] 王博、张晓玫和卢露,2017,《网络借贷是实现普惠金融的有效途径吗——来自“人人贷”的微观借贷证据》,《中国工业经济》第2期,第98~116页。
[12] 吴雨、李洁和尹志超,2018,《房价上涨对P2P网络借贷成本的影响分析——来自“人人贷”的经验证据》,《金融研究》第11期,第85~97页。
[13] 徐龙炳、陈历轶和邵天,2018,《上市公司为何更名:行为信号理论新解》,《财经研究》第8期,第74~87页。
[14] 叶德珠和陈霄,2017,《标点与字数会影响网络借贷吗——来自“人人贷”的经验证据》,《财贸经济》第5期,第65~79页。
[15] 郑志刚、刘思敏和黄继承,2018,《我国上市公司策略性股票更名:战略转型还是高位套现?》,《金融研究》第10期,第159~173页。
[16] 朱家祥、沈艳和邹欣,2018,《网络借贷:普惠?普骗?与监管科技》,《经济学(季刊)》第4期,第1599~1622页。
[17] 朱信凯和刘刚,2009,《二元金融体制与农户消费信贷选择——对合会的解释与分析》,《经济研究》第3期,第43~55页。
[18] Aigner, Dennis, C. A. K. Lovell, and P. Schmidt. 1977. “Formulation and Estimation of Stochastic Frontier Production Function Models”, Journal of Econometrics, 6(1):21~37.
[19] Baker, Malcolm, B. Mendal, and J. Wurgler. 2016. “Dividends as Reference Points: A Behavioral Signaling Approach” ,The Review of Financial Studies, 29(3):697~738.
[20] Dorfleitner, Gregor, C. Priberny, S. Schuster, J. Stoiber, M. Weber, and I. De Castro. 2016. “Description-text Related Soft Information in Peer-to-Peer Lending -Evidence from Two Leading European Platforms”, Journal of Banking & Finance, 64(3):169~187.
[21] Duarte, J., S. Siegel, and L. Young. 2012. “Trust and Credit: The Role of Appearance in Peer-to-peer Lending”, Review of Financial Studies, 25(8):2455~2484.
[22] Emekter, Riza, Y. Tu, B. Jirasakuldech, and M. Lu. 2014. “Evaluating Credit Risk and Loan Performance in Online Peer-to-Peer Lending”, Applied Economics, 47(1):54~70.
[23] Freedman, Seth and G. Z. Jin. 2017. “The Information Value of Online Social Networks: Lessons from Peer-to-Peer Lending”, International Journal of Industrial Organization, 51(3):185~222.
[24] Green, T. Clifton and R. Jame. 2013. “Company Name Fluency, Investor Recognition, and Firm Value”, Journal of Financial Economics, 109(3):813~834.
[25] Greiner, Martina E. and H. Wang. 2010. “Building Consumer-to-Consumer Trust in E-Finance Marketplaces: An Empirical Analysis”, International Journal of Electronic Commerce, 15(2):105~136.
[26] Lin, Mingfeng, N. Prabhala, and S. Viswanathan. 2013. “Judging Borrowers by the Company They Keep: Friendship Networks and Information Asymmetry in Online Peer-to-Peer Lending”, Social Science Electronic Publishing, 59(1):17~35.
[27] Michels, Jeremy. 2012. “Do Unverifiable Disclosures Matter? Evidence from Peer-to-Peer Lending”, Accounting Review, 87(4):1385~1413.
[28] Pope, Devin G. and J. R. Sydnor. 2011. “What's in a Picture?: Evidence of Discrimination from Prosper.com”, Journal of Human Resources, 46(1):53~92.
[29] Ravina, Enrichetta. 2012. “Love & Loans: The Effect of Beauty and Personal Characteristics in Credit Markets”, SSRN Working Paper, No. 1101647.
[30] Rona-Tas, Akos and A. Guseva. 2013. “Information and Consumer Credit in Central and Eastern Europe”, Journal of Comparative Economics, 41(2):420~435.
[31] Stein, Jeremy C.. 2002. “Information Production and Capital Allocation: Decentralized versus Hierarchical Firms”, The Journal of Finance, 57(5):1891~1921.
[32] Stiglitz, Joseph E and A. Weiss. 1981. “Credit Rationing in Markets with Imperfect Information”, American Economic Review, 71(3):393~410.
[33] Wang, Hung J. and P. Schmidt. 2002. “One-step and Two-step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels”, Journal of Productivity Analysis, 18(2):129~144.
[1] 许红梅, 李春涛. 劳动保护、社保压力与企业违约风险——基于《社会保险法》实施的研究[J]. 金融研究, 2020, 477(3): 115-133.
[2] 宋全云, 李晓, 钱龙. 经济政策不确定性与企业贷款成本[J]. 金融研究, 2019, 469(7): 57-75.
[1] 孙天琦, 王笑笑. 内外部金融周期差异如何影响中国跨境资本流动?[J]. 金融研究, 2020, 477(3): 1 -20 .
[2] 陈琳, 袁志刚, 朱一帆. 人民币汇率波动如何影响中国企业的对外直接投资?[J]. 金融研究, 2020, 477(3): 21 -38 .
[3] 刘倩, 朱书尚, 吴非. 城市群政策能否促进区域金融协调发展?——基于方言视角下的实证检验[J]. 金融研究, 2020, 477(3): 39 -57 .
[4] 吕朝凤, 毛霞. 地方金融发展能够影响FDI的区位选择吗?——一个基于城市商业银行设立的准自然实验[J]. 金融研究, 2020, 477(3): 58 -76 .
[5] 宋弘, 吴茂华. 高房价是否导致了区域高技能人力资本流出?[J]. 金融研究, 2020, 477(3): 77 -95 .
[6] 孙天阳, 成丽红. 协同创新网络与企业出口绩效——基于社会网络和企业异质性的研究[J]. 金融研究, 2020, 477(3): 96 -114 .
[7] 许红梅, 李春涛. 劳动保护、社保压力与企业违约风险——基于《社会保险法》实施的研究[J]. 金融研究, 2020, 477(3): 115 -133 .
[8] 郝项超. 委托理财导致上市公司脱实向虚吗?——基于企业创新的视角[J]. 金融研究, 2020, 477(3): 152 -168 .
[9] 王姝勋, 董艳. 期权激励与企业并购行为[J]. 金融研究, 2020, 477(3): 169 -188 .
[10] 张程, 曾庆生, 贺惠宇. 事前披露能够降低董监高减持的获利能力吗?——基于中国“减持新规”的实证检验[J]. 金融研究, 2020, 477(3): 189 -206 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1