Please wait a minute...
金融研究  2026, Vol. 547 Issue (1): 189-206    
  本期目录 | 过刊浏览 | 高级检索 |
数字时代的投顾服务与基金价值创造——基于网络外部性的视角
胡聪慧, 赵佳文, 彭锐, 王琳
Investment Advisory Services and Fund Value Creation in the Digital Era: A Network Externalities Perspective
HU Conghui, ZHAO Jiawen, PENG Rui, WANG Lin
Business School, Beijing Normal University;
School of Economics and Management, Beijing University of Posts and Telecommunications
下载:  PDF (771KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文以某大型销售平台推出优选基金服务为背景,研究数字时代投资顾问服务对基金价值创造的影响。研究发现,投顾服务推出后,优选基金的资金净流入显著增加,平均每季度较配对基金高出11.3%;但其价值创造却显著下降,以Jensen Alpha衡量的超额收益平均每季度较配对基金低1.2%,考虑管理规模后的平均季度价值增量减少约4339万元。投顾服务推出后半年内,资金净流入越多的优选基金,其业绩下滑幅度越大。本文进一步从基金经理调仓能力、管理积极性与交易冲击成本三个维度探讨了影响机制。研究表明,在数字时代的海量用户情境下,投顾服务易产生网络负外部性,导致投资策略出现非预期的收益衰减。这一发现对理解投顾服务数字化的内在规律具有参考意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡聪慧
赵佳文
彭锐
王琳
关键词:  数字金融  投资顾问  网络外部性  基金销售  基金绩效    
Summary:  Enhancing investors' welfare is a long-standing imperative for promoting the high-quality development of the mutual fund industry. With the rapid advance of digital technologies, fund distribution channels are undergoing a profound digital transformation. Yet, mutual funds differ fundamentally from ordinary consumer goods: they entail substantial cognitive demands and uncertain returns, making investor education and guidance by distribution platforms essential. This paper studies a major online fund distributor's introduction of a “Recommended Funds” advisory service. The service selects a small set of high-quality funds from a universe of thousands to reduce investors' search costs and provides continuous monitoring, interpretation, and follow-up guidance aimed at facilitating long-term investment. Although these features are designed from an investment advisory perspective to help investors select funds and allocate assets more systematically, advisory services inherently exhibit negative network externalities. On a large-traffic digital platform, uniform advisory signals can unintentionally generate diminishing returns to scale and reduced managerial efficiency.
We examine this issue using an entropy balancing procedure to assign weights to treated (recommended) and matched control funds to ensure comparability on observable fund characteristics and prior performance. Taking July 2020, the launch date of the recommended-fund list, as the treatment event, we implement a difference-in-differences design to compare net flows and fund performance between recommended funds and matched controls over the two years before and after the service rollout.
Our main findings are as follows. First, the introduction of the recommendation list leads to a sharp increase in flows into recommended funds. On average, recommended funds experience quarterly asset-growth rates 11.3% higher than matched funds, indicating that unified digital sales guidance exerts a substantial effect on investor fund choices and persistently attracts inflows.
Second, recommended funds exhibit significantly lower subsequent abnormal performance. Their quarterly Jensen alphas decline by 1.2% relative to matched funds. Further, when we sort recommended funds by the magnitude of inflows, the performance deterioration is concentrated among funds experiencing larger inflows. This pattern confirms that investor crowding triggered by the advisory service is the primary mechanism driving performance decline.
Third, we study the underlying channels from the perspective of fund managers. Larger assets under management can erode performance through multiple channels. We examine adjustments in portfolio rebalancing ability, managerial activeness, and trading impact costs. The evidence shows that reduced short-term rebalancing flexibility and increased passive holdings are the dominant channels through which performance deteriorates for recommended funds.
From an academic perspective, this paper uses the mutual fund distribution setting to uncover a distinctive challenge in the digitalization of investment advisory services. The classic advisory literature primarily focuses on how agency conflicts and behavioral biases affect client outcomes (e.g., Hackethal et al., 2012; Hoechles et al., 2017; Linnainmaa et al., 2021). A growing strand of literature examines how technology-enabled advisory tools can improve investor welfare (e.g., D’Acunto et al., 2019; Hao et al., 2022; Rossi & Utkus, 2024; Bianchi & Brière, 2024). However, it has not recognized a key distinction between advisory services and ordinary products: investment advice exhibits negative network externalities. Unlike standard goods and services, the utility of an advisory service declines as more clients follow the same recommendation. Consequently, uniform investment guidance delivered through large digital platforms can impair the performance and value creation of the advised products, representing an inefficient form of advisory digitalization.
This paper also provides causal evidence on how increases in fund scale reduce performance. A large strand of literature studies the relationship between fund size and returns. Chen et al. (2004) first documented a negative relation between fund performance and lagged fund size. Subsequent studies have largely followed the same setting and employed more sophisticated empirical techniques, yet they have not fully addressed endogeneity concerns (Pástor et al., 2015; Zhu, 2018). Reuter & Zitzewitz (2021) exploited a plausibly exogenous setting but failed to find consistent negative scale effects. Leveraging the release of a recommended-fund list by a major distribution platform as an exogenous shock, this paper provides clean evidence that scale expansion not only depresses fund performance but also undermines the fund's value creation.
From a practical standpoint, the results deepen our understanding of individual investors' fund selection behavior and offer important implications for regulating fund distribution on the digital platform. Financial regulation in the digital era must guard not only against the moral hazard of distributors but also against the unintended consequences of well-intentioned advisory practices. On large-traffic digital platforms, centralized advisory guidance can accelerate diminishing returns to scale, ultimately lowering investors' perceived service quality and damaging the reputation of financial institutions.
Keywords:  Digital Finance    Investment Advisory    Network Externalities    Fund Distribution    Fund Performance
JEL分类号:  G11   G23  
基金资助: *作者感谢国家自然科学基金(72372011)和中央高校基本科研业务费专项资金(1233200014)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  王 琳,管理学博士,讲师,北京邮电大学经济管理学院,E-mail: nina6009@163.com.   
作者简介:  胡聪慧,经济学博士,教授,北京师范大学经济与工商管理学院,E-mail: huconghui@bnu.edu.cn.
赵佳文,硕士研究生,北京师范大学经济与工商管理学院,E-mail: zhaojiawen@mail.bnu.edu.cn.
彭 锐,经济学硕士,北京师范大学经济与工商管理学院,E-mail: peng_rui@mail.bnu.edu.cn.
引用本文:    
胡聪慧, 赵佳文, 彭锐, 王琳. 数字时代的投顾服务与基金价值创造——基于网络外部性的视角[J]. 金融研究, 2026, 547(1): 189-206.
HU Conghui, ZHAO Jiawen, PENG Rui, WANG Lin. Investment Advisory Services and Fund Value Creation in the Digital Era: A Network Externalities Perspective. Journal of Financial Research, 2026, 547(1): 189-206.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2026/V547/I1/189
[1] 李志冰和刘晓宇,2019,《基金业绩归因与投资者行为》,《金融研究》第2期,第188~206页。
[2] 林兟、何为、余剑峰和熊熊,2023,《公募基金改善了市场定价效率吗?——持股基金质量与股票收益》,《金融研究》第4期,第149~167页。
[3] 刘洋溢、廖妮和罗荣华,2022,《基金赚钱、基民不赚钱:业绩持续性感知与基金投资者行为》,《中国工业经济》第2期,第156~174页。
[4] 路晓蒙、王一冰和吴卫星,2023,《传统投资顾问和智能投资顾问:替代还是互补?》,《管理世界》第10期,第74~98页。
[5] 申宇、赵静梅和何欣,2013,《基金未公开的信息:隐形交易与投资业绩》,《管理世界》第8期,第53~66页。
[6] 王辉、宁炜和陈旭,2024,《数字化平台营销与投资者利益——基于基金管理人视角》,《管理世界》第3期,第205~219页。
[7] 王琳和陈思,2023,《投资顾问能否帮助个人投资者盈利?——基于A股市场微观调查数据的经验证据》,《金融论坛》第8期,第35~46页。
[8] 钟超杰、赵淳、高峰、王天宇和王倩,2024,《金融科技改善你的基金投资了吗?——基于基金销售渠道的分析》,《金融研究》第5期,第114~131页。
[9] Barras, L., P. Gagliardini and O. Scaillet, 2022, “Skill, Scale and Value Creation in the Mutual Fund Industry”, Journal of Finance, 77(1), pp.601~638.
[10] Bianchi, M. and M. Brière, 2024, “Human-Robot Interactions in Investment Decisions”,Management Science, Forthcoming.
[11] Ben-David, I., J. Li, A. Rossi, et al, 2022, “What Do Mutual Fund Investors Really Care About?”,The Review of Financial Studies, 35(4), pp.1723~1774.
[12] Berk, J. B. and R. C. Green, 2004, “Mutual Fund Flows and Performance in Rational Markets”,Journal of Political Economy, 112(6), pp.1269~1295.
[13] Berk, J. B., and J. H. Van Binsbergen, 2015 “Measuring Skill in the Mutual Fund Industry”, Journal of Financial Economics,118(1),pp. 1~20.
[14] Chen, J., H. Hong, M. Huang, et al, 2004, “Does Fund Size Erode Mutual Fund Performance? The Role of Liquidity and Organization”,American Economic Review, 94(5), pp.1276~1302.
[15] Cremers, K. J. M. and A. Petajisto, 2009, “How Active Is Your Fund Manager? A New Measure That Predicts Performance”,The Review of Financial Studies, 22(9), pp.3329~3365.
[16] D’Acunto, F., N. Prabhala and A. G. Rossi, 2019, “The Promises and Pitfalls of Robo-Advising”,Review of Financial Studies, 32(5), pp.1983~2020.
[17] Hackethal, A., M. Haliassos and T. Jappelli, 2012, “Financial Advisors: A Case of Babysitters?”, Journal of Banking & Finance, 36(2), pp.509~524.
[18] Hao, R., C. Hu, X. Xu and Y. Zhang, 2022, “Beyond Performance: The Financial Education Role of Robo-Advising”,Available at SSRN 4230191.
[19] Hoechle, D., S. Ruenzi, N. Schaub and M. Schmid, 2017, “The Impact of Financial Advice on Trade Performance and Behavioral Biases”, Review of Finance, 21(2), pp.871~910.
[20] Hong, C. Y., X. Lu, and J. Pan, 2025, “Fintech Platforms and Mutual Fund Distribution”,Management Science, 71(1).
[21] Kacperczyk, M., C. Sialm and L. Zheng, 2008, “Unobserved Actions of Mutual Funds”,The Review of Financial Studies, 21(6), pp.2379~2416.
[22] Kaniel, R. and R. Parham, 2017, “WSJ Category Kings: The Impact of Media Attention on Consumer and Mutual Fund Investment Decisions”,Journal of Financial Economics, 123(2), pp.337~356.
[23] Katz, M. L. and C. Shapiro, 1985, “Network Externalities, Competition and Compatibility”,The American Economic Review, 75(3), pp.424~440.
[24] Liebowitz, S. J. and S. E. Margolis, 1994, “Network Externality: An Uncommon Tragedy”,Journal of Economic Perspectives, 8(2), pp.133~150.
[25] Linnainmaa, J. T., B. T. Melzer and A. Previtero, 2021, “The Misguided Beliefs of Financial Advisors”,The Journal of Finance, 76(2), pp.587~621.
[26] Pástor, L'., R. F. Stambaugh and L. A. Taylor, 2020, “Fund Tradeoffs”,Journal of Financial Economics, 138(3), pp.614~634.
[27] Pástor, L'., R. F. Stambaugh and L. A. Taylor, 2015, “Scale and Skill in Active Management”,Journal of Financial Economics, 116(1), pp.23~45.
[28] Reuter, J. and E. Zitzewitz, 2006, “Do Ads Influence Editors? Advertising and Bias in the Financial Media”,The Quarterly Journal of Economics, 121(1), pp.197~227.
[29] Reuter, J. and E. Zitzewitz, 2021, “How Much Does Size Erode Mutual Fund Performance? A Regression Discontinuity Approach”, Review of Finance, 25(5), pp.1395~1432.
[30] Rohlfs, J, 1974, “A Theory of Interdependent Demand for a Communications Service”,The Bell Journal of Economics and Management Science, pp.16~37.
[31] Rossi, A. G. and S. Utkus, 2024, “The Diversification and Welfare Effects of Robo-Advising”,Journal of Financial Economics, 157, pp.103869.
[32] Roussanov, N., H. Ruan and Y. Wei, 2021, “Marketing Mutual Funds”, The Review of Financial Studies, 34(6), pp.3045~3094.
[33] Sirri, E. R. and P. Tufano, 1998, “Costly Search and Mutual Fund Flows” ,The Journal of Finance, 53(5), pp.1589~1622.
[34] Zhu, M, 2018, “Informative Fund Size, Managerial Skill and Investor Rationality”, Journal of Financial Economics, 130(1), pp.114~134.
[1] 胡聪慧 Download
[1] 李青原, 喻淼, 董燕飞, 黄炜. 数字基础设施与家庭风险金融资产投资——基于“宽带中国”政策的证据[J]. 金融研究, 2025, 540(6): 133-151.
[2] 沈艳, 江弘毅, 胡诗云, 赵家琪, 黄卓. 数字金融支持高质量发展:理论、机制和证据[J]. 金融研究, 2024, 529(7): 20-39.
[3] 钟超杰, 赵淳, 高峰, 王天宇, 王倩. 金融科技改善你的基金投资了吗?——基于基金销售渠道的分析[J]. 金融研究, 2024, 527(5): 114-131.
[4] 谭莹, 王盼, 张勋. 数字金融发展的劳动力迁移效应——来自中国家庭追踪调查的微观证据[J]. 金融研究, 2024, 532(10): 39-57.
[5] 许泳昊, 刘玉珍, 厉行. 休闲消费与居民资产配置——基于情绪理论的分析[J]. 金融研究, 2023, 519(9): 168-187.
[6] 田鸽, 黄海, 张勋. 数字金融与创业高质量发展:来自中国的证据[J]. 金融研究, 2023, 513(3): 74-92.
[7] 蔡卫星, 韦庆芳, 林航宇. 数字金融发展的劳动力需求效应 ——来自2000万在线招聘岗位的经验证据[J]. 金融研究, 2023, 520(10): 28-46.
[8] 张海洋, 胡英琦, 陆利平, 蔡卫星. 数字时代的银行业变迁——网点布局与行业结构[J]. 金融研究, 2022, 507(9): 75-92.
[9] 赵亚雄, 王修华. 数字金融、家庭相对收入及脆弱性——兼论多维“鸿沟”的影响[J]. 金融研究, 2022, 508(10): 77-97.
[10] 聂秀华, 江萍, 郑晓佳, 吴青. 数字金融与区域技术创新水平研究[J]. 金融研究, 2021, 489(3): 132-150.
[11] 王修华, 赵亚雄. 数字金融发展是否存在马太效应?——贫困户与非贫困户的经验比较[J]. 金融研究, 2020, 481(7): 114-133.
[1] 曾利飞, 辛子辰, 许志, 曹伟. 健全社会保障体系与居民生育率——基于长期护理保险视角[J]. 金融研究, 2025, 545(11): 58 -76 .
[2] 张成思, 田耕宇, 蒋仁智, 刘泽豪. 中国商业银行超额准备金持有的驱动机制研究[J]. 金融研究, 2026, 547(1): 1 -19 .
[3] 宋科, 李亭, 朱斯迪. 人民币清算行设立能推动跨境贸易人民币结算吗?——兼论CIPS的协同效应[J]. 金融研究, 2025, 546(12): 1 -19 .
[4] 刘冲, 张紫嫣, 李欣明, 程子帅. 商业银行利率风险的计量与管理——基于重定价缺口的研究[J]. 金融研究, 2026, 547(1): 20 -37 .
[5] 王博, 吴振伦, 罗荣华, 张晓玫. 金融监管与企业资本结构动态调整——来自资管新规的证据[J]. 金融研究, 2026, 547(1): 57 -75 .
[6] 杨鹏, 孙伟增, 田轩, 左祥太. 网络安全风险治理与企业创新——基于大语言模型的识别与发现[J]. 金融研究, 2026, 547(1): 76 -94 .
[7] 徐臻阳, 龚六堂, 董丰, 许志伟. 股价波动与最优双支柱政策调控[J]. 金融研究, 2025, 544(10): 21 -39 .
[8] 余锦亮, 王文秀, 祁毓, 李雯清. 财政收入预期增长与地方政府征管行为——来自地级市的经验证据[J]. 金融研究, 2025, 545(11): 39 -57 .
[9] 王遥, 王瑾喆, 吴祯姝, 王文蔚. 绿色金融能否促进经济“脱虚向实”——基于绿色金融改革创新试验区的经验证据[J]. 金融研究, 2025, 546(12): 20 -38 .
[10] 窦超, 李梦佳, 刘巍, 杨雪. 制裁冲击对企业债务融资成本的影响及应对措施——基于美国对华管制清单的研究[J]. 金融研究, 2026, 547(1): 38 -56 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1