Please wait a minute...
金融研究  2026, Vol. 547 Issue (1): 1-19    
  本期目录 | 过刊浏览 | 高级检索 |
中国商业银行超额准备金持有的驱动机制研究
张成思, 田耕宇, 蒋仁智, 刘泽豪
Determinants of Excess Reserve Holdings in Chinese Commercial Banks
ZHANG Chengsi, TIAN Gengyu, JIANG Renzhi, LIU Zehao
School of Finance, Renmin University of China
下载:  PDF (559KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 银行持有的超额准备金规模对利率调控机制与货币政策传导具有重要影响。本文基于商业银行流动性管理决策框架,构建具有微观基础的商业银行超额准备金持有的理论模型,并利用2010—2024年42家A股上市银行以及银行间债券数据检验银行超额准备金持有动机。结果表明:(1)存款期限结构存在差异性影响,活期存款显著驱动商业银行超额准备金持有,活期存款每增长1%将驱动超额准备金增长0.55%~0.60%,而定期存款的影响不显著;(2)银行的资产配置策略具有显著的跨期效应,暗示银行收益追逐型策略的持续性,而非简单的风险对冲驱动;(3)央行公告通过降低市场不确定性,弱化了商业银行的预防性动机,使其在利率上升环境下仍然倾向于释放准备金以追逐收益;(4)中小型银行的超额准备金持有行为符合“风险—成本”权衡模型,而大型银行对短期利率等机会成本信号呈现“钝化”特征。本文研究结果为中央银行市场化利率调控及商业银行流动性管理提供了理论依据与政策参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张成思
田耕宇
蒋仁智
刘泽豪
关键词:  超额准备金  商业银行  货币政策    
Summary:  The scale of excess reserves held by the banking system is a core variable for understanding the central bank's monetary policy transmission mechanism, market interest rate formation, and the stability of the financial system. Particularly in the context of China's monetary policy framework transitioning towards price-based regulation and the increasing complexity of the banking system's liquidity environment, an in-depth analysis of the micro-level drivers of excess reserves holds significant theoretical value and practical relevance. However, existing research predominantly focuses on the experiences of developed economies, leaving the reserve decision-making mechanisms within China's unique institutional context underexplored.
This paper aims to systematically investigate the driving mechanisms and heterogeneous patterns of excess reserve holdings among Chinese commercial banks, following a framework of “theory construction-empirical identification-mechanism deepening”. Theoretically, this paper draws on the concept of convenience yield, innovatively introducing the notion of “convenience yield of excess reserves” into the bank liquidity management framework. It derives a log-linear reserve demand equation that incorporates interest rate spreads, deposit scale and structure, and bond holdings, thus laying a micro-founded theoretical basis for the empirical analysis.
Empirically, the paper primarily employs panel fixed-effects models based on semi-annual panel data of 42 A-share listed Chinese commercial banks from 2010 to 2024 (data sourced from CEIC and Wind databases). To precisely identify the complex effects of monetary policy, the model introduces a central bank announcement dummy variable and its interaction term with the interest rate spread, aiming to disentangle “price shocks” from “information shocks”. Simultaneously, to capture the intertemporal effects of banks' asset allocation and mitigate endogeneity, lagged two-period bond holdings are used. Furthermore, this paper constructs a interbank bond market liquidity model and complements the analysis with subgroup and subperiod regressions to fully explore heterogeneous mechanisms.
The empirical investigation yields four core findings:
First, banks' precautionary motives are primarily driven by the instability of their liability structure. Demand deposits are the dominant driver of excess reserve holdings (coefficient approx. 0.55~0.60), while the impact of time deposits is insignificant, confirming that reserve decisions are made to hedge the liquidity risk from more volatile liabilities.
Second, banks' asset allocation strategies exhibit significant intertemporal effects and persistence. Lagged one-year (two-period) bond holdings are significantly negatively correlated with current excess reserves, revealing the “stickiness” of banks' yield-seeking behavior rather than a simple risk-hedging motive.
Third, central bank announcements, via the “information shock” channel, significantly alter banks' responses to interest rate signals, but the effect is highly “state-dependent”. During non-announcement periods, rising interest rates lead banks to increase reserves (precautionary motive dominates). However, during announcement windows, this relationship systematically reverses, with banks tending to release reserves in pursuit of higher yields. Yet, this communication effectiveness is not unconditional: the “information effect” of announcements is most significant during policy tightening phases, while during early monetary easing periods and high-uncertainty periods, the role of central bank communication is significantly weakened.
Fourth, liquidity management paradigms differ fundamentally across bank sizes. Small and medium-sized banks' behavior aligns with the classic “risk-cost” trade-off model, with their reserve decisions responding to deposits, asset allocation, and interest rate signals. In contrast, large banks, as systemic payment nodes, have reserve holdings primarily driven by functional demand, exhibiting significant “passivation” (insensitivity) to short-term interest rate signals representing opportunity costs.
These findings carry important implications for optimizing the monetary policy framework and liquidity regulation system. First, policy operations must shift from an aggregate-focused to a structure-sensitive perspective, fully considering the heterogeneity of the banking system, particularly the “structural rigidity” of large banks' reserve demand, while optimizing liquidity support frameworks for smaller banks. Second, the effectiveness of forward guidance should be enhanced by establishing a “state-dependent” communication strategy. Policymakers should flexibly adjust communication content and methods based on real-time market liquidity status and policy stances to maximize expectation-stabilizing effects. Third, the liquidity regulation framework should reflect bank heterogeneity and intertemporal risks. This requires moving beyond static, point-in-time assessments to establish intertemporal macroprudential monitoring of banks' balance sheet strategies, while considering differentiated weights reflecting banks' systemic importance and payment-clearing roles.
Keywords:  Excess Reserves    Commercial Banks    Monetary policy
JEL分类号:  E51   E52   E58  
基金资助: *本文受到北京市社会科学基金重大规划项目(25ZDA04)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  刘泽豪,经济学博士,教授,中国人民大学财政金融学院,E-mail:liuzehao@ruc.edu.cn.   
作者简介:  张成思,经济学博士,教授,中国人民大学财政金融学院/中国财政金融政策研究中心/中国金融市场与政策研究所,E-mail:zhangcs@ruc.edu.cn.
田耕宇,博士研究生,中国人民大学财政金融学院,E-mail:tiangengyu@ruc.edu.cn.
蒋仁智,经济学博士,重庆市国有资产监督管理委员会,E-mail:2499158696@qq.com.
引用本文:    
张成思, 田耕宇, 蒋仁智, 刘泽豪. 中国商业银行超额准备金持有的驱动机制研究[J]. 金融研究, 2026, 547(1): 1-19.
ZHANG Chengsi, TIAN Gengyu, JIANG Renzhi, LIU Zehao. Determinants of Excess Reserve Holdings in Chinese Commercial Banks. Journal of Financial Research, 2026, 547(1): 1-19.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2026/V547/I1/1
[1] 范志勇、安戈洋和章永辉,2024,《银行间市场短端利率波动与货币政策传导效率——基于利率互换市场高频识别与局部投影方法》,《金融研究》第9期,第1~19页。
[2] 梅冬州、宋佳馨和谭小芬,2023,《跨境资本流动、金融摩擦与准备金政策分化》,《经济研究》第6期,第49~66页。
[3] 张成思,2024,《中国市场化利率调控体系改革思考》,《经济研究》第10期,第189~208页。
[4] 钟山、林木材和洪智武,2023,《金融网络视角下的银行间市场基准利率体系与货币政策冲击传导》,《金融研究》第6期,第20~37页。
[5] Ashcraft, A., J. McAndrews and D. Skeie, 2011, “Precautionary Reserves and the Interbank Market”, Journal of Money, Credit and Banking, 43, pp. 311~348.
[6] Bech, M. and T. Keister, 2017, “Liquidity Regulation and the Implementation of Monetary Policy”, Journal of Monetary Economics, 92, pp. 64~77.
[7] Bekaert, G., Harvey, C. R. and Lundblad, C., 2007, “Liquidity and expected returns: Lessons from emerging markets”, The Review of Financial Studies, 20(6), pp. 1783~1831.
[8] Bernanke, B. S., 1983, “Nonmonetary Effects of the Financial Crisis in the Propagation of the Great Depression”, American Economic Review, 73(3), pp. 257~276.
[9] Bratsiotis, G. J. and Theodoridis, K., 2022, “Precautionary Liquidity Shocks, Excess Reserves and Business Cycles”, Journal of International Financial Markets, Institutions and Money, 77, 101518.
[10] Calomiris, C. W., J. R. Mason and D. C. Wheelock, 2023, “Did Doubling Reserve Requirements Cause the 1937-38 Recession? New Evidence on the Impact of Reserve Requirements on Bank Reserve Demand and Lending”, Journal of Financial Intermediation, 56, 101056.
[11] Chang, S.-H., S. Contessi and J. L. Francis, 2014, “Understanding the Accumulation of Bank and Thrift Reserves During the U.S. Financial Crisis”, Journal of Economic Dynamics and Control, 43, pp. 78~106.
[12] Cohen, B. H. and Scatigna, M., 2016, “Banks and Capital Requirements: Channels of Adjustment”, Journal of Banking and Finance, 69(Supplement 1), pp. S56~S69.
[13] Diamond, W., Z. Jiang and Y. Ma, 2024, “The Reserve Supply Channel of Unconventional Monetary Policy”, Journal of Financial Economics, 159, 103887.
[14] Friedman, M. and A. J. Schwartz, 1963, A Monetary History of the United States, 1867-1960, Princeton University Press.
[15] Frost, P. A., 1971, “Banks' Demand for Excess Reserves”, Journal of Political Economy, 79(4), pp. 805~825.
[16] Gorton, G.and Metrick, A., 2012, “Securitized Banking and the Run on Repo”, Journal of Financial economics, 104(3), pp. 425~451.
[17] Hoffmann, P. and J.D. Sigaux, 2020, “Determinants of Excess Reserve Holdings”, Economics Letters, 195, 109439.
[18] Jarociński, M. and Karadi, P., 2020, “Deconstructing Monetary Policy Surprises—the Role of Information Shocks”, American Economic Journal: Macroeconomics, 12(2), pp. 1~43.
[19] Krishnamurthy, A. and A. Vissing-Jorgensen, 2012, “The Aggregate Demand for Treasury Debt”, Journal of Political Economy, 120(2), pp. 233~267.
[20] Lesmond, D. A., Ogden, J. P. and Trzcinka, C. A., 1999, “A New Estimate of Transaction Costs”, The Review of Financial Studies, 12(5), pp. 1113~1141.
[21] Ogawa, K., 2007, “Why Commercial Banks Held Excess Reserves: The Japanese Experience of the Late 1990s”, Journal of Money, Credit and Banking, 39(1), pp. 241~257.
[22] Poole, W., 1968, “Commercial Bank Reserve Management in A Stochastic Model: Implications for Monetary Policy”, Journal of Finance, 23(5), pp. 769~791.
[1] 张成思 Download
[1] 高洁超, 范从来, 贾鹏飞, 杨源源. 金融监管、理财子公司设立与宏观审慎管理扩容[J]. 金融研究, 2025, 542(8): 19-36.
[2] 张甜, 刘一鸣. 绿色企业的贷款利率会更低吗?——基于商业银行贷款定价行为的视角[J]. 金融研究, 2025, 537(3): 76-93.
[3] 高崧耀, 王佳欣, 崔百胜. 房地产市场调整、银行资产负债表与货币政策应对[J]. 金融研究, 2025, 537(3): 40-57.
[4] 王擎, 秦慧颖, 盛夏. 金融科技、货币政策传导与消费——来自大科技平台个人用户的微观证据[J]. 金融研究, 2025, 545(11): 1-18.
[5] 范志勇, 安戈洋, 章永辉. 银行间市场短端利率波动与货币政策传导效率——基于利率互换市场高频识别与局部投影方法[J]. 金融研究, 2024, 531(9): 1-19.
[6] 马理, 张人中, 马威. 绿色结构性货币政策的实施效果与传导机理研究[J]. 金融研究, 2024, 529(7): 40-58.
[7] 巩冰, 张蓓, 杨斯尧, 徐照宜. “双碳”目标下碳减排支持工具对商业银行市场价值的影响研究[J]. 金融研究, 2024, 529(7): 77-95.
[8] 董青马, 张皓越, 马剑文, 尚玉皇. 央行沟通与资产价格——识别“潜在”未预期货币政策信息[J]. 金融研究, 2024, 528(6): 40-59.
[9] 林建浩, 陈良源, 黄颖平. 识别货币政策操作的多重冲击及其经济效应[J]. 金融研究, 2024, 527(5): 20-38.
[10] 陈国进, 丁赛杰, 赵向琴. 绿色结构性货币政策、政策预期与经济绿色转型[J]. 金融研究, 2024, 526(4): 1-19.
[11] 方意, 和文佳, 王琦. 非核心负债业务、流动性渠道和银行业系统性风险:理论模型与经验分析[J]. 金融研究, 2024, 525(3): 20-37.
[12] 谭小芬, 李子若, 赵茜, 卢冰. 货币政策分化与跨境银行资本流动的部门间配置——兼论官方部门的“缓冲器”作用[J]. 金融研究, 2024, 534(12): 1-19.
[13] 闫昱, 童彦, 哈斯木其尔, 金桩. 利率变动、交易行为与金融稳定——一个融合异质信念的异质代理人连续时间DSGE模型[J]. 金融研究, 2024, 534(12): 20-39.
[14] 张成思, 徐硕, 何启志. 国债收益率曲线仿射模型与期限传递机制研究[J]. 金融研究, 2024, 534(12): 59-77.
[15] 王辉, 朱家雲, 胡诣聪. 央行预期引导可以降低银行系统性金融风险吗?——基于市场解读偏离的视角[J]. 金融研究, 2023, 519(9): 1-19.
[1] 曾利飞, 辛子辰, 许志, 曹伟. 健全社会保障体系与居民生育率——基于长期护理保险视角[J]. 金融研究, 2025, 545(11): 58 -76 .
[2] 宋科, 李亭, 朱斯迪. 人民币清算行设立能推动跨境贸易人民币结算吗?——兼论CIPS的协同效应[J]. 金融研究, 2025, 546(12): 1 -19 .
[3] 刘冲, 张紫嫣, 李欣明, 程子帅. 商业银行利率风险的计量与管理——基于重定价缺口的研究[J]. 金融研究, 2026, 547(1): 20 -37 .
[4] 王博, 吴振伦, 罗荣华, 张晓玫. 金融监管与企业资本结构动态调整——来自资管新规的证据[J]. 金融研究, 2026, 547(1): 57 -75 .
[5] 杨鹏, 孙伟增, 田轩, 左祥太. 网络安全风险治理与企业创新——基于大语言模型的识别与发现[J]. 金融研究, 2026, 547(1): 76 -94 .
[6] 徐臻阳, 龚六堂, 董丰, 许志伟. 股价波动与最优双支柱政策调控[J]. 金融研究, 2025, 544(10): 21 -39 .
[7] 余锦亮, 王文秀, 祁毓, 李雯清. 财政收入预期增长与地方政府征管行为——来自地级市的经验证据[J]. 金融研究, 2025, 545(11): 39 -57 .
[8] 王遥, 王瑾喆, 吴祯姝, 王文蔚. 绿色金融能否促进经济“脱虚向实”——基于绿色金融改革创新试验区的经验证据[J]. 金融研究, 2025, 546(12): 20 -38 .
[9] 冀云阳, 杨雨晨, 王秀磊. “新基建”融资与数字经济发展——来自专项债发行的证据[J]. 金融研究, 2026, 547(1): 95 -112 .
[10] 陈思翀, 魏筱, 余明桂. 非上市企业的绿色低碳技术创新价值——技术并购中的市场溢价与创新协同[J]. 金融研究, 2026, 547(1): 113 -131 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1