Please wait a minute...
金融研究  2025, Vol. 540 Issue (6): 152-170    
  本期目录 | 过刊浏览 | 高级检索 |
关键金属价格波动、绿色激励与新能源企业创新
刘阳, 肖淇泳, 韩立岩, 秦萍
中国人民大学应用经济学院,北京 100872;
北京航空航天大学经济管理学院,北京 100191;
北京雁栖湖应用数学研究院,北京 101408
Critical Metal Price Volatility, Green Incentives and Innovation of New Energy Enterprises
LIU Yang, XIAO Qiyong, HAN Liyan, QIN Ping
School of Applied Economics, Renmin University of China,
School of Economics and Management, Beihang University,
Beijing Institute of Mathematical Sciences and Applications
下载:  PDF (571KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 关键金属作为新能源行业的重要投入要素,战略地位日益凸显。本文基于2007—2022年中国七大新能源行业上市公司数据,探究关键金属价格波动对新能源企业创新的影响。研究表明,关键金属价格波动显著抑制新能源企业整体专利申请量,但对新能源专利的负向影响弱于传统能源专利,且该波动会促使企业增加关键金属节约型专利的申请量。机制分析发现,关键金属价格波动通过金融摩擦效应和预防性储蓄效应抑制企业研发投入,而绿色激励政策能有效缓解新能源创新活动所受的负向冲击,企业竞争效应则驱动关键金属节约型创新。进一步分析表明,随着新能源行业渗透率的提升、企业能源转型程度的加深和产业链的延伸,关键金属价格波动对新能源企业创新的影响更为显著。本文研究表明,需确保关键金属供应链安全,加强企业价格风险管理,通过绿色创新提升绿色融资能力,推动实现新能源发展战略。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘阳
肖淇泳
韩立岩
秦萍
关键词:  新能源关键金属  企业创新  能源转型  环境规制  绿色金融    
Summary:  With the continuous breakthroughs and widespread application of new energy technologies, China has occupied a leading position in the global new energy industry competition, giving birth to a number of international giants in new energy equipment manufacturing. To promote the continuous innovation and further development of China's new energy technologies, fostering a favorable business and innovation ecosystem is crucial, ensuring stable and sustained returns for new energy innovation. Unlike traditional energy, new energy technologies such as photovoltaics, wind turbines, nuclear reactors, and new energy vehicles are highly reliant on critical metal materials. The geographically concentrated production and processing of critical metals, coupled with long delivery cycles, have caused significant price volatility, introducing uncertainty into the business ecosystem of new energy enterprises. This study examines how critical metal price volatility influences the innovation activities of new energy enterprises, aiming to provide practical insights for advancing China's low-carbon energy transition and high-quality development.
Starting from the input of factors in the new energy industry, this study uses patent application microdata from listed companies across seven Chinese new energy sectors—hydropower, nuclear energy, wind energy, solar energy, biomass and waste-incineration power generation, geothermal energy, and new energy vehicles—spanning the period 2007-2022. The study delves into how critical metal price volatility impacts new energy enterprise innovation. Using negative binomial regression, the analysis defines innovation output as the dependent variable, measured by patent applications. By combining keyword identification with large language models on patent abstracts, the study distinguishes new energy patents, traditional energy patents, and resource-saving patents related to critical metals. The core explanatory variable is critical metal price volatility. First, a monthly critical metal price index for each new energy sector is derived through weighted calculations based on metal usage density. Then, the annual standard deviation of monthly price returns constructs the critical metal price volatility index.
This study shows that critical metal price volatility significantly negatively affects new energy enterprises' patent applications. Compared with traditional energy patents, new energy patents are less affected and the impact is not significant. Notably, increased critical metal price volatility can motivate enterprises to develop resource-saving patents related to critical metals. Further exploration into the potential mechanisms at play uncovers two key aspects. On the one hand, the financing constraint effect and the precautionary saving effect are identified as the primary factors that lead to a reduction in enterprises' R&D investment in the face of critical metal price volatility. On the other hand, the roles of the government and the market provide insights into the direction of innovation. Government green incentives like environmental regulations, green finance development and new energy subsidies ease the negative impact of price volatility on new-energy-related patents. Meanwhile, enterprise competition prompts more resource-saving patents related to critical metals to reduce cost-fluctuation exposure and gain market advantages. Heterogeneous analysis reveals that as the new energy industry penetration rate rises, the impact of critical metal price volatility strengthens. Enterprises with high energy transition degrees and those in midstream and downstream of the industrial chain are more affected by such price volatility.
The research findings have significant policy implications. First, China should enhance its global influence over critical metal resources and vigorously pursue circular economy development to strengthen the supporting role of resource-saving technologies in new energy security. Second, the government needs to accelerate the innovation of metal futures and other derivative product markets. Third, new energy enterprises should actively manage the risks of critical metal price volatility by using metal derivatives for hedging or entering into long-term supply contracts with upstream and downstream enterprises. Fourth, the government should actively promote financial market system reforms and develop a greater variety of green financial products.
The marginal contributions of this study are mainly reflected in three aspects. First, this paper extends the research on factors influencing new energy innovation by focusing on critical metals, an important input factor in the new energy industry, adding a new perspective and data support. Second, the study broadens the boundary of the understanding of critical metals' importance in the new energy industry. Existing studies mostly focus on the macro-level constraints of critical metal resources on new energy development, while pay insufficient attention to their micro-level impacts on enterprises. This study shifts the focus to the micro-level of enterprises, elucidating the micro mechanisms of how critical metal price volatility differently affects innovation activities across energy types. Finally, this paper provides insights for both the government and new energy enterprises in promoting new energy industry development and formulating business strategies.
Keywords:  Critical Metals for New Energy    Corporate Innovation    Energy Transition    Environmental Regulations    Green Finance
JEL分类号:  L72   O31   Q55  
基金资助: *本文感谢国家自然科学基金项目(72101254、72473013)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  秦萍,经济学博士,教授,中国人民大学应用经济学院,E-mail:pingqin@ruc.edu.cn.   
作者简介:  刘阳,管理学博士,副教授,中国人民大学应用经济学院,E-mail:lyang0822@ruc.edu.cn.
肖淇泳,博士研究生,中国人民大学应用经济学院,E-mail:xiaoqy@ruc.edu.cn.
韩立岩,理学博士,教授,北京航空航天大学经济管理学院、北京雁栖湖应用数学研究院,E-mail:hanly@buaa.edu.cn.
引用本文:    
刘阳, 肖淇泳, 韩立岩, 秦萍. 关键金属价格波动、绿色激励与新能源企业创新[J]. 金融研究, 2025, 540(6): 152-170.
LIU Yang, XIAO Qiyong, HAN Liyan, QIN Ping. Critical Metal Price Volatility, Green Incentives and Innovation of New Energy Enterprises. Journal of Financial Research, 2025, 540(6): 152-170.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V540/I6/152
[1] 陈诗一和陈登科,2018,《雾霾污染、政府治理与经济高质量发展》,《经济研究》第2期,第20~34页。
[2] 戴永安和张潇,2023,《环境政策的空间溢出与城市能源偏向型技术进步》,《世界经济》第5期,第119~151页。
[3] 刘波、李志生和王泓力,2017,《现金流不确定性与企业创新》,《经济研究》第3期,第166~180页。
[4] 齐绍洲、张倩和王班班,2017,《新能源企业创新的市场化激励——基于风险投资和企业专利数据的研究》,《中国工业经济》第12期,第95~112页。
[5] 孙传旺、占妍泓和林伯强,2022,《新能源企业增值税政策的规模效应与创新效应》,《经济研究》第9期,第46~64页。
[6] 王馨和王营,2021,《绿色信贷政策增进绿色创新研究》,《管理世界》第6期,第173~188页。
[7] 王艳丽、类晓东和龙如银,2021,《绿色信贷政策提高了企业的投资效率吗?——基于重污染企业金融资源配置的视角》,《中国人口·资源与环境》第1期,第123~133页。
[8] 杨宇、夏四友和钱肖颖,2022,《能源转型的地缘政治研究》,《地理学报》第8期,第2050~2066页。
[9] 余东华和吕逸楠,2015,《政府不当干预与战略性新兴产业产能过剩——以中国光伏产业为例》,《中国工业经济》第10期,第53~68页。
[10] 周亚虹、蒲余路和陈诗一,2015,《政府扶持与新型产业发展——以新能源为例》,《经济研究》第6期,第147~161页。
[11] 祝继高、韩非池和陆正飞,2015,《产业政策、银行关联与企业债务融资——基于A股上市公司的实证研究》,《金融研究》第3期,第176-191页。
[12] Acemoglu, D., P. Aghion, L. Bursztyn and D. Hemous, 2012, “The Environment and Directed Technical Change”, American Economic Review, 102(1), pp.131~166.
[13] Aghion, P., A. Dechezleprêtre, D. Hemous, R. Martin and J. Van Reenen, 2016, “Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry”, Journal of Political Economy, 124(1), pp.1~51.
[14] Bajolle, H., M. Lagadic and N. Louvet, 2022, “The Future of Lithium-ion Batteries: Exploring Expert Conceptions, Market Trends, and Price Scenarios”, Energy Research & Social Science, 93, 102850.
[15] Bastianin, A., C. Casoli and M. Galeotti, 2023, “The Connectedness of Energy Transition Metals”, Energy Economics, 128, 107183.
[16] Bernanke, B. S., 1983, “Irreversibility, Uncertainty, and Cyclical Investment”, The Quarterly Journal of Economics, 98(1), pp.85~106.
[17] Bhattacharya, U., P. H. Hsu, X. Tian and Y. Xu, 2017, “What Affects Innovation More: Policy or Policy Uncertainty?”, Journal of Financial and Quantitative Analysis, 52(5), pp.1869~1901.
[18] Bloom, N., 2014, “Fluctuations in Uncertainty”, Journal of Economic Perspectives, 28(2), pp.153~176.
[19] Caldara D., M. Iacoviello, 2022, “Measuring Geopolitical Risk”, American Economic Review, 112(4), pp.1194~1225.
[20] Duffner, F., N. Kronemeyer, J. Tübke, J. Leker, M. Winter and R. Schmuch, 2021, “Post-lithium-ion Battery Cell Production and Its Compatibility with Lithium-ion Cell Production Infrastructure”, Nature Energy, 6(2), pp.123~134.
[21] Fan, H., Y. Peng, H. Wang and Z. Xu, 2021, “Greening Through Finance?”, Journal of Development Economics, 152, 102683.
[22] Han, S. and J. Qiu, 2007, “Corporate Precautionary Cash Holdings”, Journal of Corporate Finance, 13(1), pp.43~57.
[23] Hassler, J., P. Krusell and C. Olovsson, 2021, “Directed Technical Change as A Response to Natural Resource Scarcity”, Journal of Political Economy, 129(11), pp.3039~3072.
[24] Himmelberg, C.P. and B.C. Petersen, 1994, “R&D and Internal Finance: A Panel Study of Small Firms in High-tech Industries”, The Review of Economics and Statistics, 76, pp.38~51.
[25] Hsu, P. H., M. P. Taylor, Z. Wang and Q. Xu, 2022, “Currency Volatility and Global Technological Innovation”, Journal of International Economics, 137, 103607.
[26] IEA (International Energy Agency), 2021, “The Role of Critical Minerals in Clean Energy Transitions”.
[27] IRENA (International Renewable Energy Agency), 2023, “Geopolitics of the Energy Transition: Critical Materials”.
[28] Kalouptsidi, M., 2018, “Detection and Impact of Industrial Subsidies: The Case of Chinese Shipbuilding”, The Review of Economic Studies, 85(2), pp.1111~1158.
[29] Lin, B. and S. Wang, 2023, “The Performance of Specialized and Oriented Diversified Firms: A Comparative Analysis from the Targeted Expansion of Renewable Energy Business of Listed Companies”, International Review of Financial Analysis, 89, 102742.
[30] Noailly, J. and R. Smeets, 2015, “Directing Technical Change from Fossil-fuel to Renewable Energy Innovation: An Application Using Firm-level Patent Data”, Journal of Environmental Economics and Management, 72, pp.15~37.
[31] Popp, D., 2002, “Induced Innovation and Energy Prices”, American Economic Review, 92(1), pp.160~180.
[32] Sovacool, B. K., S. H. Ali, M. Bazilian, B. Radley, B. Nemery, J. Okatz and D. Mulvaney, 2020, “Sustainable Minerals and Metals for a Low-carbon Future”, Science, 367(6473), pp.30~33.
[33] Wang, H., K. Feng, P. Wang, Y. Yang, L. Sun, F. Yang, W. Q. Chen, Y. Zhang and J. Li, 2023, “China's Electric Vehicle and Climate Ambitions Jeopardized by Surging Critical Material Prices”, Nature Communications, 14(1), 1246.
[34] Watari, T., B. C. McLellan, D. Giurco, E. Dominish, E. Yamasue and K. Nansai, 2019, “Total Material Requirement for the Global Energy Transition to 2050: A Focus on Transport and Electricity”, Resources, Conservation and Recycling, 148, pp.91~103.
[1] 蔡庆丰, 陈熠辉, 严佳佳. “强省会”的创新外部性——基于省域知识交流与产业分工的研究视角[J]. 金融研究, 2025, 536(2): 132-149.
[2] 魏晓云, 韩立岩. 环境规制、绿色技术创新与违约风险[J]. 金融研究, 2024, 528(6): 169-187.
[3] 杜兴强, 谢裕慧, 曾泉. 绿色金融政策抑制了企业的环境违规吗?——基于绿色金融改革创新试验区的一项准自然实验[J]. 金融研究, 2024, 527(5): 132-149.
[4] 张美扬, 龙小宁. 专利丛林:科技创新中的绿荫还是荆棘?[J]. 金融研究, 2024, 527(5): 169-187.
[5] 蔡庆丰, 刘昊, 舒少文. 政府产业引导基金与域内企业创新:引导效应还是挤出效应?[J]. 金融研究, 2024, 525(3): 75-93.
[6] 陈海强, 胡晓雪, 李东旭. 金融考核“绿色化”与污染企业绿色并购——基于信号效应的视角[J]. 金融研究, 2024, 524(2): 131-148.
[7] 魏浩, 封起扬帆. 进口竞争、创新风险与创新质量——基于单一企业和企业集团的再考察[J]. 金融研究, 2024, 533(11): 57-75.
[8] 许锐, 王艳艳, 于李胜. 专利质押贷款的创新激励效应[J]. 金融研究, 2024, 532(10): 58-75.
[9] 温慧愉, 杜佳月, 高昊宇, 李欣明. 碳市场激励下的企业ESG表现——来自中国碳排放权交易试点的经验证据[J]. 金融研究, 2024, 532(10): 95-112.
[10] 袁凯彬, 李万利, 张伟俊. 人民币参与国际结算能否激励出口企业创新? ——基于跨境贸易人民币结算试点的研究[J]. 金融研究, 2023, 516(6): 94-112.
[11] 许年行, 王崇骏, 章纪超. 破产审判改革、债权人司法保护与企业创新 ——基于清算与破产审判庭设立的准自然实验[J]. 金融研究, 2023, 516(6): 150-168.
[12] 冀云阳, 周鑫, 张谦. 数字化转型与企业创新——基于研发投入和研发效率视角的分析[J]. 金融研究, 2023, 514(4): 111-129.
[13] 赵思琦, 刘庆富, 杨金强, 李源. 全国碳市场的碳排放权配额管理机制设计——基于碳交易和风险对冲的视角[J]. 金融研究, 2023, 522(12): 74-93.
[14] 李倩, 程昱, 程新生. 产业链企业上市是否影响企业创新投资?[J]. 金融研究, 2023, 521(11): 153-169.
[15] 张杰, 郑姣姣. 公路基础设施如何重塑中国创新格局 ——基于地域异质性的微观证据[J]. 金融研究, 2023, 520(10): 66-84.
[1] 康琦, 高峰, 刘硕, 王倩, 叶子文. 主力资金异象和投资者信息博弈[J]. 金融研究, 2025, 535(1): 189 -206 .
[2] 何富美, 刘兵, 欧阳志刚. 通胀预期不确定性的内需效应: 理论机制与经验证据[J]. 金融研究, 2025, 537(3): 1 -20 .
[3] 宗计川, 吴庆帮. 流动性冲击与系统重要性银行的稳定作用[J]. 金融研究, 2025, 538(4): 21 -38 .
[4] 谭莹, 王盼, 张勋. 数字金融发展的劳动力迁移效应——来自中国家庭追踪调查的微观证据[J]. 金融研究, 2024, 532(10): 39 -57 .
[5] 许楠, 毛奕欢, 刘浩. 经营预算信息链式传递与供应链长鞭效应——基于信息溢出与风险自治的视角[J]. 金融研究, 2024, 533(11): 38 -56 .
[6] 罗章权, 郭凯明, 吴红晨. 生产结构转型与生产率——基于全球视角的分析[J]. 金融研究, 2025, 536(2): 1 -19 .
[7] 李志生, 刘周熠. 资本工具创新与银行流动性创造——来自永续债的证据[J]. 金融研究, 2024, 534(12): 40 -58 .
[8] 张博, 张晓帆, 蔡子阳. 金融科技、金融普惠与非法集资风险[J]. 金融研究, 2025, 535(1): 39 -57 .
[9] 郭豫媚, 王航, 郭田勇, 郭俊杰. 中央银行通货膨胀预期管理有效性评估——基于文本通货膨胀预期指数的研究[J]. 金融研究, 2025, 538(4): 1 -20 .
[10] 翟光宇, 薛严慨, 李静怡. 新一轮个税改革与居民消费潜能——基于综合课征和专项附加扣除的研究[J]. 金融研究, 2025, 540(6): 39 -57 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1