|
|
Macro-economic Forecasts Based on the MF-BVAR |
ZHANG Jinfan, GANG Jianhua, QIAN Zongxin, ZHANG Lingyan
|
School of Management and Economics, Chinese University of Hong Kong (Shenzhen)/ Shenzhen Finance Institute/ International Monetary Institute, Renmin University of China; China Financial Policy Research Center, School of Finance, Renmin University of China; Department of Industrial Engineering and Operations Research, Columbia University |
|
|
Abstract This paper constructs a Bayesian mixed frequency VAR (MF-BVAR) model to study the dynamics of China’s macro-economy and to forecast the key macro variables. The MF-BVAR model can nest high frequency macro information (e.g. capital market price) without compromising to the low frequency information (e.g GDP, investment) in economic projection. Empirical evidence shows that the MF-BVAR model dominates other classic models on forecasting key macro indicators such as CPI, RPI and GDP growth. The study further demonstrates that the real estate investment plays a significant role in forecasting China’s economic dynamics, while the stock market is insignificant in macro projection.
|
Received: 25 October 2017
Published: 01 November 2018
|
|
|
|
[1] |
龚玉婷、陈强和郑旭,2014,《基于混频模型的CPI短期预测研究》,《统计研究》第31卷第12期,第25~31页。
|
[2] |
何青、钱宗鑫和郭俊杰,2015,《房地产驱动了中国经济周期吗》,《经济研究》第12期,第41~53页。
|
[3] |
刘汉和刘金全,2011,《中国宏观经济总量的实时预报与短期预测——基于混频数据模型的实证研究》,《经济研究》第3期,第4~17页。
|
[4] |
李正辉和郑玉航,2015,《基于混频数据模型的中国经济周期区制监测研究》,《统计研究》第32卷第1期,第33~40页。
|
[5] |
苏治、尹力博和方彤,2015,《量化宽松与国际大宗商品市场:溢出性、非对称性和长记忆性》,《金融研究》,第3期,第68~82页。
|
[6] |
郑挺国和尚玉皇,2013,《基于金融指标对中国GDP的混频预测分析》,《金融研究》第9期,第16~29页。
|
[7] |
郑挺国和尚玉皇,2016,《短期利率波动测度与预测:基于混频宏观-短期利率模型》,《金融研究》,第11期,第 47~62页。
|
[8] |
周建和况明,2015,《中国宏观经济动态传导、可靠性及货币政策机制》,《经济研究》第2期,第31~46页。
|
[9] |
Baffigi, A., Golinelli, R., Parigi, G. 2004. “Bridge Models to Forecast the Euro Area GDP”. International Journal of Forecasting, 20 (3): 447~460.
|
[10] |
Bernanke, B., Gertler, M., Gilchrist, S. 1999. “The Financial Accelerator in a Quantitative Business Cycle Framework”. Handbook of Macroeconomics Volume 1 (Taylor, J., and Woodford, M. eds.), 1341~1393, Elsevier.
|
[11] |
Blasques, F., Koopman, F.J., Mallee, M., Zhang, Z. 2016. “Weighted Maximum Likelihood for Dynamic Factor Analysis and Forecasting with Mixed Frequency Data”. Journal of Econometrics, 193 (2): 405~417.
|
[12] |
Brockwell, P.J., Davis, R.A. 1987. “Time Series: Theory and Methods”. Journal of the American Statistical Association, 42 (1): 159~181.
|
[13] |
Chiu, C.W.J., Eraker, B., Forester, A.T., Kim, T.B., Seoane, H.D. 2011. “Estimating VAR's Sampled at Mixed Frequencies or Irregular Spaced Frequencies: Bayesian Approach”. Kansas City Federal Reserve Bank Economic Research Department Research Working Paper.
|
[14] |
Chatfield, C. 1993. “Calculating Interval Forecasts”. Journal of Business & Economic Statistics, 11 (2): 121~135.
|
[15] |
Creal, D., Schwaab, B., Koopman, S.J., Lucas, A. 2014. “Observation-driven Mixed Measurement Dynamic Factor Models with an Application to Credit Risk”. The Review of Economics and Statistics, 96(5): 898~915.
|
[16] |
Clements, M., Galvão, A.B., 2008. “Macroeconomic Forecasting with Mixed-frequency Data”. Journal of Business & Economic Statistics. 26: 546~554.
|
[17] |
Doan, T., Litterman, R.B. and Sims, C.A. 1984. “Forecasting and Conditional Projection Using Realistic Prior Distributions”. Econometric Reviews, 3 (1): 1~100.
|
[18] |
Eraker, B., Chiu, C.W.J., Foerster, A.T., Kim, T.B., Seoane, H.D. 2015. “Bayesian Mixed-frequency VARs”. Journal of Financial Economics, 13: 698~721.
|
[19] |
Foroni, C. and Massimiliano Marcellino. 2013. “A Survey of Econometric Methods for Mixed-frequency Data”. Norges Bank Research Working Paper.
|
[20] |
Foroni, C. and Marcellino, M., 2014. “A Comparison of Mixed Frequency Approaches for Nowcasting Euro Area Macroeconomic Aggregates”. International Journal of Forecasting, 30(3), pp.554~568.
|
[21] |
Ghysels, E., Santa-Clara, P. and Valkanov R. 2004. “The MIDAS Touch: Mixed Data Sampling Regression Models”. Cirano Working Papers. 5 (1): 512~517.
|
[22] |
Ghysels, E., 2016. “Macroeconomics and the Reality of Mixed Frequency Data”. Journal of Econometrics, 193(2), pp.294~314.
|
[23] |
Götz, T.B., Hecqb, A., Smeekesb, S. 2016. “Testing for Granger Causality in Large Mixed-frequency VARs”. Journal of Econometrics, 193: 418~432.
|
[24] |
Giordani, P., Pitt, M.K. and Kohn, R. 2011. “Bayesian Inference for Time Series State Space Models”. Handbook of Bayesian Econometrics. Oxford University Press.
|
[25] |
Kiyotaki, N., Moore, J. 1997. “Credit Cycles”. Journal of Political Economy, 105(2), 211~248.
|
[26] |
Kong, D., Liu, H., Wang, L. 2008. “Is There a Risk-return Trade-off? Evidences from Chinese Stock Markets”. Frontiers of Economics in China, 3 (1): 1~23.
|
[27] |
Koop, G., Dimitris, Korobilis. 2014. “A New Index of Financial Conditions”. European Economic Review, 71, 101~116.
|
[28] |
Kuzin, V., Marcellino, M., Schumacher, C. 2011. “MIDAS vs. Mixed-frequency VAR:Nowcasting GDP in the Euro Area”. International Journal of Forecasting, 27 (2): 529~542.
|
[29] |
Kilian, L., Taylor, M.P. 2003. “Why Is It so Difficult to Beat the Random Walk Forecast of Exchange Rates?” Journal of International Economics, 60 (1): 85~107.
|
[30] |
Litterman, R.B., 1986, “Forecasting With Bayesian Vector Autoregressions—Five Years of Experience”, Journal of Business & Economic Statistics, 4 (1): 25~38.
|
[31] |
Mariano, R. S. and Y. Murasawa. 2010. “A Coincident Index, Common Factors, and Monthly Real GDP”. Oxford Bulletin of Economics and Statistics, 72 (1): 27~46.
|
[32] |
Mariano, R. S. and Y. Murasawa. 2003. “A New Coincident Index of Business Cycles Based on Monthly and Quarterly Series”. Journal of Applied Econometrics, 18 (4): 427~443.
|
[33] |
Negro, M. D., and Schorfheide, F. 2011. “Bayesian Macro-econometrics”. The Oxford Handbook of Bayesian Econometrics, pp. 293–389. Oxford University Press.
|
[34] |
Schorfheide, F. and Song, D. 2012. “Real-Time Forecasting with a Mixed-Frequency VAR”. Federal Reserve Bank of Minneapolis Research Department Working Paper.
|
[35] |
Schorfheide, F. and Song, D., 2015. “Real-time Forecasting with a Mixed-frequency VAR”. Journal of Business & Economic Statistics, 33(3), pp.366~380.
|
[36] |
Sims, C.A. and Zha, T. 1998. “Bayesian Methods for Dynamic Multivariate Models”. International Economic Review, 39 (4): 949~968.
|
[37] |
Sims, C. A. 1980. “Macroeconomics and Reality”, Econometrica, 48 (1): 1~48.
|
[38] |
Zadrozny, P.A. 2008. “Estimating a Multivariate ARMA Model with Mixed Frequency Data: An Application to Forecasting U.S. GNP at Monthly Intervals”. CESifo Working Paper.
|
[39] |
Zadrozny, P.A. 1988. “Gaussian Likelihood of Continuous Time AR-MAX Models When Data are Stocks and Flows at Different Frequencies”. Econometric Theory, 4 (1): 108~124.
|
|
|
|