[1] |
尚玉皇和郑挺国,2016,《短期利率波动测度与预测:基于混频宏观-短期利率模型》,《金融研究》第11期,第47~62页。<br />
|
|
尚玉皇和郑挺国,2016,《短期利率波动测度与预测:基于混频宏观-短期利率模型》,《金融研究》第11期,第47~62页。<br />
|
[2] |
曾志平、萧海东和张新鹏,2017,《基于DBN的金融时序数据建模与决策》,《计算机技术与发展》第4期,第1~8页。<br />
|
|
曾志平、萧海东和张新鹏,2017,《基于DBN的金融时序数据建模与决策》,《计算机技术与发展》第4期,第1~8页。<br />
|
[3] |
张承钊,2016,《一种金融市场预测的深度学习模型:FEPA模型》,电子科技大学博士论文。<br />
|
|
张承钊,2016,《一种金融市场预测的深度学习模型:FEPA模型》,电子科技大学博士论文。<br />
|
[4] |
Agrawal J. G., Chourasia V. S., and Mittra A. K.. 2013. “State-of-the-art in Stock Prediction Techniques”<i>International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering</i>,2(4):1360~1366.<br />
|
|
Agrawal J. G., Chourasia V. S., and Mittra A. K.. 2013. “State-of-the-art in Stock Prediction Techniques”<i>International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering</i>,2(4):1360~1366.<br />
|
[5] |
Arel I., Rose D. C., and Karnowski T. P.. 2010. “Deep Machine Learning-A New Frontier in Artificial Intelligence Research [research frontier]”<i>IEEE Computational Intelligence Magazine</i>, 5(4):13~18.<br />
|
|
Arel I., Rose D. C., and Karnowski T. P.. 2010. “Deep Machine Learning-A New Frontier in Artificial Intelligence Research [research frontier]”<i>IEEE Computational Intelligence Magazine</i>, 5(4):13~18.<br />
|
[6] |
Asness C. S., Moskowitz T. J., and Pedersen L. H..2013. “Value and Momentum Everywhere”<i>The Journal of Finance</i>, 68(3): 929~985.<br />
|
|
Asness C. S., Moskowitz T. J., and Pedersen L. H..2013. “Value and Momentum Everywhere”<i>The Journal of Finance</i>, 68(3): 929~985.<br />
|
[7] |
Atsalakis G. S., Valavanis K. P.. 2009. “Surveying Stock Market Forecasting Techniques–Part II: Soft Computing Methods”<i>Expert Systems with Applications</i>, 36(3):5932~5941.<br />
|
|
Atsalakis G. S., Valavanis K. P.. 2009. “Surveying Stock Market Forecasting Techniques–Part II: Soft Computing Methods”<i>Expert Systems with Applications</i>, 36(3):5932~5941.<br />
|
[8] |
Ba J., Frey B.. 2013. “Adaptive Dropout for Training Deep Neural Networks”<i>Advances in Neural Information Processing Systems</i>, Working Paper, pp.3084~3092.<br />
|
|
Ba J., Frey B.. 2013. “Adaptive Dropout for Training Deep Neural Networks”<i>Advances in Neural Information Processing Systems</i>, Working Paper, pp.3084~3092.<br />
|
[9] |
Bengio Y., Courville A., and Vincent P.. 2013. “Representation Learning: A Review and New Perspectives”<i>IEEE transactions on pattern analysis and machine intelligence</i>, 35(8):1798~1828.<br />
|
|
Bengio Y., Courville A., and Vincent P.. 2013. “Representation Learning: A Review and New Perspectives”<i>IEEE transactions on pattern analysis and machine intelligence</i>, 35(8):1798~1828.<br />
|
[10] |
Bengio Y.. 2009. “Learning Deep Architectures for AI”<i>Foundations and trends<sup>?</sup> in Machine Learning</i>, 2(1):1~127.<br />
|
|
Bengio Y.. 2009. “Learning Deep Architectures for AI”<i>Foundations and trends<sup>?</sup> in Machine Learning</i>, 2(1):1~127.<br />
|
[11] |
Bollen J., Mao H., and Zeng X.. 2011. “Twitter Mood Predicts the Stock Market”<i>Journal of Computational Science</i>, 2(1):1~8.<br />
|
|
Bollen J., Mao H., and Zeng X.. 2011. “Twitter Mood Predicts the Stock Market”<i>Journal of Computational Science</i>, 2(1):1~8.<br />
|
[12] |
Bovier A., Cˇerny J., and Hryniv O.. 2006. “The opinion game: Stock price evolution from microscopic market modeling”<i>International Journal of Theoretical and Applied Finance</i>, 9(01): 91~111.<br />
|
|
Bovier A., Cˇerny J., and Hryniv O.. 2006. “The opinion game: Stock price evolution from microscopic market modeling”<i>International Journal of Theoretical and Applied Finance</i>, 9(01): 91~111.<br />
|
[13] |
Cartea á., Jaimungal S., and Ricci J.. 2014. “Buy Low, Sell High: A High Frequency Trading Perspective”<i>SIAM Journal on Financial Mathematics</i>, 5(1):415~444.<br />
|
|
Cartea á., Jaimungal S., and Ricci J.. 2014. “Buy Low, Sell High: A High Frequency Trading Perspective”<i>SIAM Journal on Financial Mathematics</i>, 5(1):415~444.<br />
|
[14] |
Cavalcante R. C., Brasileiro R. C., and Souza V. L. F., et al.. 2016. “Computational Intelligence and Financial Markets: A Survey and Future Directions”<i>Expert Systems with Applications</i>, (55):194~211.<br />
|
|
Cavalcante R. C., Brasileiro R. C., and Souza V. L. F., et al.. 2016. “Computational Intelligence and Financial Markets: A Survey and Future Directions”<i>Expert Systems with Applications</i>, (55):194~211.<br />
|
[15] |
Cont R., Stoikov S., and Talreja R.. 2010. “A Stochastic Model for Order Book Dynamics”<i>Operations research</i>, 58(3):549~563.<br />
|
|
Cont R., Stoikov S., and Talreja R.. 2010. “A Stochastic Model for Order Book Dynamics”<i>Operations research</i>, 58(3):549~563.<br />
|
[16] |
Cont R.. 2011. “Statistical Modeling of High-frequency Financial Data”<i>IEEE Signal Processing Magazine</i>, 28(5): 16~25. <br />
|
[17] |
Deng Y., Bao F., and Kong Y., et al.. 2016. “Deep Direct Reinforcement Learning for Financial Signal Representation and Trading” DOI: 10.1109/TNNLS.2016.2522401.<br />
|
[16] |
Cont R.. 2011. “Statistical Modeling of High-frequency Financial Data”<i>IEEE Signal Processing Magazine</i>, 28(5): 16~25. <br />
|
[17] |
Deng Y., Bao F., and Kong Y., et al.. 2016. “Deep Direct Reinforcement Learning for Financial Signal Representation and Trading” DOI: 10.1109/TNNLS.2016.2522401.<br />
|
[18] |
Ding X., Zhang Y., and Liu T., et al.. 2014. “Using Structured Events to Predict Stock Price Movement: An Empirical Investigation” EMNLP, pp.1415~1425.<br />
|
|
Ding X., Zhang Y., and Liu T., et al.. 2014. “Using Structured Events to Predict Stock Price Movement: An Empirical Investigation” EMNLP, pp.1415~1425.<br />
|
[19] |
Ding X., Zhang Y., and Liu T., et al.. 2015. “Deep learning for event-driven stock prediction” Proceedings of the 24th International Joint Conference on Artificial Intelligence (ICJAI’15), pp.2327~2333.<br />
|
|
Ding X., Zhang Y., and Liu T., et al.. 2015. “Deep learning for event-driven stock prediction” Proceedings of the 24th International Joint Conference on Artificial Intelligence (ICJAI’15), pp.2327~2333.<br />
|
[20] |
Dixon M., Klabjan D., and Bang J. H.. 2015. “Implementing Deep Neural Networks for Financial Market Prediction on the Intel Xeon Phi” Proceedings of the 8th Workshop on High Performance Computational Finance, ACM, No.6.<br />
|
|
Dixon M., Klabjan D., and Bang J. H.. 2015. “Implementing Deep Neural Networks for Financial Market Prediction on the Intel Xeon Phi” Proceedings of the 8th Workshop on High Performance Computational Finance, ACM, No.6.<br />
|
[21] |
Dixon M. F., Klabjan D., and Bang J. H.. 2016. “Classification-based Financial Markets Prediction Using Deep Neural Networks” Available at SSRN 2756331.<br />
|
|
Dixon M. F., Klabjan D., and Bang J. H.. 2016. “Classification-based Financial Markets Prediction Using Deep Neural Networks” Available at SSRN 2756331.<br />
|
[22] |
Fehrer R., Feuerriegel S.. 2015. “Improving Decision Analytics with Deep Learning: The Case of Financial Disclosures” arXiv preprint arXiv:1508.01993.<br />
|
|
Fehrer R., Feuerriegel S.. 2015. “Improving Decision Analytics with Deep Learning: The Case of Financial Disclosures” arXiv preprint arXiv:1508.01993.<br />
|
[23] |
Fletcher T., Shawe-Taylor J.. 2013. “Multiple Kernel Learning with Fisher Kernels for High Frequency Currency Prediction”<i>Computational Economics</i>, 42(2):217~240.<br />
|
|
Fletcher T., Shawe-Taylor J.. 2013. “Multiple Kernel Learning with Fisher Kernels for High Frequency Currency Prediction”<i>Computational Economics</i>, 42(2):217~240.<br />
|
[24] |
Hagenau M., Liebmann M., and Neumann D.. 2013. “Automated News Reading: Stock Price Prediction based on Financial News Using Context-capturing Features”<i>Decision Support Systems</i>, 55(3):685~697.<br />
|
|
Hagenau M., Liebmann M., and Neumann D.. 2013. “Automated News Reading: Stock Price Prediction based on Financial News Using Context-capturing Features”<i>Decision Support Systems</i>, 55(3):685~697.<br />
|
[25] |
Hamid S. A., Iqbal Z.. 2004. “Using Neural Networks for Forecasting Volatility of S&P 500 Index Futures Prices”<i>Journal of Business Research</i>, 57(10):1116~1125.<br />
|
|
Hamid S. A., Iqbal Z.. 2004. “Using Neural Networks for Forecasting Volatility of S&P 500 Index Futures Prices”<i>Journal of Business Research</i>, 57(10):1116~1125.<br />
|
[26] |
Heaton J. B., Polson N. G., and Witte J. H.. 2016a. “Deep Learning in Finance” arXiv preprint arXiv:1602.06561.<br />
|
|
Heaton J. B., Polson N. G., and Witte J. H.. 2016a. “Deep Learning in Finance” arXiv preprint arXiv:1602.06561.<br />
|
[27] |
Heaton J. B., Polson N. G., and Witte J. H.. 2016b. “Deep Portfolio Theory” arXiv preprint arXiv:1605.07230.<br />
|
|
Heaton J. B., Polson N. G., and Witte J. H.. 2016b. “Deep Portfolio Theory” arXiv preprint arXiv:1605.07230.<br />
|
[28] |
Hinton G. E., Osindero S., and Teh Y. W.. 2006. “A Fast Learning Algorithm for Deep Belief Nets”<i>Neural computation</i>, 18(7):1527~1554.<br />
|
|
Hinton G. E., Osindero S., and Teh Y. W.. 2006. “A Fast Learning Algorithm for Deep Belief Nets”<i>Neural computation</i>, 18(7):1527~1554.<br />
|
[29] |
Hinton G. E., Salakhutdinov R. R.. 2006. “Reducing the Dimensionality of Data with Neural Networks”<i>Science</i>, 313(5786):504~507.<br />
|
|
Hinton G. E., Salakhutdinov R. R.. 2006. “Reducing the Dimensionality of Data with Neural Networks”<i>Science</i>, 313(5786):504~507.<br />
|
[30] |
Hinton G. E., Srivastava N., and Krizhevsky A., et al.. 2012. “Improving Neural Networks by Preventing Co-adaptation of Feature Detectors,” arXiv preprint arXiv:1207.0580.<br />
|
|
Hinton G. E., Srivastava N., and Krizhevsky A., et al.. 2012. “Improving Neural Networks by Preventing Co-adaptation of Feature Detectors,” arXiv preprint arXiv:1207.0580.<br />
|
[31] |
Huang C. L., Tsai C. Y.. 2009. “A Hybrid SOFM-SVR with A Filter-based Feature Selection for Stock Market Forecasting”<i>Expert Systems with Applications</i>, 36(2):1529~1539.<br />
|
|
Huang C. L., Tsai C. Y.. 2009. “A Hybrid SOFM-SVR with A Filter-based Feature Selection for Stock Market Forecasting”<i>Expert Systems with Applications</i>, 36(2):1529~1539.<br />
|
[32] |
Huang H., Kercheval A. N.. 2012. “A Generalized Birth–death Stochastic Model for High-frequency Order Book Dynamics”<i>Quantitative Finance</i>, 12(4):547~557.<br />
|
|
Huang H., Kercheval A. N.. 2012. “A Generalized Birth–death Stochastic Model for High-frequency Order Book Dynamics”<i>Quantitative Finance</i>, 12(4):547~557.<br />
|
[33] |
Huang Z., Chen H., and Hsu C. J., et al.. 2004. “Credit Rating Analysis with Support Vector Machines and Neural Networks: A Market Comparative Study”<i>Decision support systems</i>, 37(4):543~558.<br />
|
|
Huang Z., Chen H., and Hsu C. J., et al.. 2004. “Credit Rating Analysis with Support Vector Machines and Neural Networks: A Market Comparative Study”<i>Decision support systems</i>, 37(4):543~558.<br />
|
[34] |
Kercheval A. N., Zhang Y.. 2015. “Modelling High-frequency Limit Order Book Dynamics with Support Vector Machines”<i>Quantitative Finance</i>, 15(8):1315~1329.<br />
|
|
Kercheval A. N., Zhang Y.. 2015. “Modelling High-frequency Limit Order Book Dynamics with Support Vector Machines”<i>Quantitative Finance</i>, 15(8):1315~1329.<br />
|
[35] |
Kijima H., Takada H., and Tomiya T.. 2016. “SVM-Enhanced Filtering Model for Limit Order Book Dynamics” Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications, the ISCIE Symposium on Stochastic Systems Theory and Its Applications, pp.181~188.<br />
|
|
Kijima H., Takada H., and Tomiya T.. 2016. “SVM-Enhanced Filtering Model for Limit Order Book Dynamics” Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications, the ISCIE Symposium on Stochastic Systems Theory and Its Applications, pp.181~188.<br />
|
[36] |
Kogan S., Levin D., and Routledge B. R., et al.. 2009. “Predicting Risk from Financial Reports with Regression” Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Association for Computational Linguistics, pp.272~280.<br />
|
|
Kogan S., Levin D., and Routledge B. R., et al.. 2009. “Predicting Risk from Financial Reports with Regression” Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Association for Computational Linguistics, pp.272~280.<br />
|
[37] |
Kuremoto T., Kimura S., and Kobayashi K., et al.. 2014. “Time Series Forecasting Using A Deep Belief Network with Restricted Boltzmann Machines,”<i>Neurocomputing</i>, (137):47~56.<br />
|
|
Kuremoto T., Kimura S., and Kobayashi K., et al.. 2014. “Time Series Forecasting Using A Deep Belief Network with Restricted Boltzmann Machines,”<i>Neurocomputing</i>, (137):47~56.<br />
|
[38] |
L?ngkvist M., Karlsson L., and Loutfi A.. 2014. “A Review of Unsupervised Feature Learning and Deep Learning for Time-series Modeling”<i>Pattern Recognition Letters</i>, (42):11~24.<br />
|
|
L?ngkvist M., Karlsson L., and Loutfi A.. 2014. “A Review of Unsupervised Feature Learning and Deep Learning for Time-series Modeling”<i>Pattern Recognition Letters</i>, (42):11~24.<br />
|
[39] |
LeCun Y., Bengio Y., and Hinton G.. 2015. “Deep Learning”<i>Nature</i>, 521(7553):436~444.<br />
|
|
LeCun Y., Bengio Y., and Hinton G.. 2015. “Deep Learning”<i>Nature</i>, 521(7553):436~444.<br />
|
[40] |
Lischinsky A.. 2011. “In Times of Crisis: A Corpus Approach to the Construction of the Global Financial Crisis in Annual Reports”<i>Critical Discourse Studies</i>, 8(3):153~168.<br />
|
|
Lischinsky A.. 2011. “In Times of Crisis: A Corpus Approach to the Construction of the Global Financial Crisis in Annual Reports”<i>Critical Discourse Studies</i>, 8(3):153~168.<br />
|
[41] |
Luss R., d’Aspremont A.. 2015. “Predicting Abnormal Returns from News Using Text Classification”<i>Quantitative Finance</i>, 15(6):999~1012.<br />
|
|
Luss R., d’Aspremont A.. 2015. “Predicting Abnormal Returns from News Using Text Classification”<i>Quantitative Finance</i>, 15(6):999~1012.<br />
|
[42] |
Lütkepohl H.. 2005. “New Introduction to Multiple Time Series Analysis” Published by Springer Science & Business Media.<br />
|
|
Lütkepohl H.. 2005. “New Introduction to Multiple Time Series Analysis” Published by Springer Science & Business Media.<br />
|
[43] |
Minev M., Schommer C., and Grammatikos T.. 2012. “News and Stock Markets: A Survey on Abnormal Returns and Prediction Models” Technical Report, UL.<br />
|
|
Minev M., Schommer C., and Grammatikos T.. 2012. “News and Stock Markets: A Survey on Abnormal Returns and Prediction Models” Technical Report, UL.<br />
|
[44] |
Mordvintsev A., Olah C., and Tyka M..2015. “Inceptionism: Going Deeper into Neural Networks” Google Research Blog. Retrieved June, 2015, 20.<br />
|
|
Mordvintsev A., Olah C., and Tyka M..2015. “Inceptionism: Going Deeper into Neural Networks” Google Research Blog. Retrieved June, 2015, 20.<br />
|
[45] |
Muntermann J., Guettler A..2007. “Intraday Stock Price Effects of Ad Hoc Disclosures: The German Case”<i>Journal of International Financial Markets, Institutions and Money,</i> 17(1):1~24.<br />
|
|
Muntermann J., Guettler A..2007. “Intraday Stock Price Effects of Ad Hoc Disclosures: The German Case”<i>Journal of International Financial Markets, Institutions and Money,</i> 17(1):1~24.<br />
|
[46] |
Nair V., Hinton G. E.. 2010. “Rectified Linear Units Improve Restricted Boltzmann Machines” Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp.807~814.<br />
|
|
Nair V., Hinton G. E.. 2010. “Rectified Linear Units Improve Restricted Boltzmann Machines” Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp.807~814.<br />
|
[47] |
Najafabadi M. M., Villanustre F., and Khoshgoftaar T. M., et al.. 2015. “Deep Learning Applications and Challenges in Big Data Analytics”<i>Journal of Big Data</i>, 2(1):1~21.<br />
|
|
Najafabadi M. M., Villanustre F., and Khoshgoftaar T. M., et al.. 2015. “Deep Learning Applications and Challenges in Big Data Analytics”<i>Journal of Big Data</i>, 2(1):1~21.<br />
|
[48] |
Nassirtoussi A. K., Aghabozorgi S., and Wah T. Y., et al. 2014. “Text Mining for Market Prediction: A Systematic Review”<i>Expert Systems with Applications</i>, 41(16): 7653~7670.<br />
|
|
Nassirtoussi A. K., Aghabozorgi S., and Wah T. Y., et al. 2014. “Text Mining for Market Prediction: A Systematic Review”<i>Expert Systems with Applications</i>, 41(16): 7653~7670.<br />
|
[49] |
Pang B., Lee L.. 2008. “Opinion Mining and Sentiment Analysis”<i>Foundations and trends in information retrieval</i>, 2(1-2):1~135.<br />
|
|
Pang B., Lee L.. 2008. “Opinion Mining and Sentiment Analysis”<i>Foundations and trends in information retrieval</i>, 2(1-2):1~135.<br />
|
[50] |
Prieto A., Prieto B., and Ortigosa E. M., et al.. 2016. “Neural Networks: An Overview of Early Research, Current Frameworks and New Challenges”<i>Neurocomputing</i>, (214):242~268.<br />
|
|
Prieto A., Prieto B., and Ortigosa E. M., et al.. 2016. “Neural Networks: An Overview of Early Research, Current Frameworks and New Challenges”<i>Neurocomputing</i>, (214):242~268.<br />
|
[51] |
Pr?llochs N., Feuerriegel S., and Neumann D.. 2014. “Generating Domain-Specific Dictionaries Using Bayesian Learning” Available at SSRN 2522884.<br />
|
|
Pr?llochs N., Feuerriegel S., and Neumann D.. 2014. “Generating Domain-Specific Dictionaries Using Bayesian Learning” Available at SSRN 2522884.<br />
|
[52] |
Qiu X., Zhang L., and Ren Y., et al.. 2014. “Ensemble Deep Learning for Regression and Time Series Forecasting” CIEL, pp.21~26.<br />
|
|
Qiu X., Zhang L., and Ren Y., et al.. 2014. “Ensemble Deep Learning for Regression and Time Series Forecasting” CIEL, pp.21~26.<br />
|
[53] |
Rabiner L., Juang B.. 1986. “An Introduction to Hidden Markov Models”<i>IEEE ASSP magazine</i>, 3(1):4~16.<br />
|
|
Rabiner L., Juang B.. 1986. “An Introduction to Hidden Markov Models”<i>IEEE ASSP magazine</i>, 3(1):4~16.<br />
|
[54] |
R?nnqvist S., Sarlin P.. 2016. “Bank Distress in the News: Describing Events through Deep learning” arXiv preprint arXiv:1603.05670.<br />
|
|
R?nnqvist S., Sarlin P.. 2016. “Bank Distress in the News: Describing Events through Deep learning” arXiv preprint arXiv:1603.05670.<br />
|
[55] |
Ro?u I.. 2009. “A Dynamic Model of the Limit Order Book”<i>Review of Financial Studies</i>, 22(11):4601~4641.<br />
|
|
Ro?u I.. 2009. “A Dynamic Model of the Limit Order Book”<i>Review of Financial Studies</i>, 22(11):4601~4641.<br />
|
[56] |
Schmidhuber J.. 2015. “Deep Learning in Neural Networks: An Overview”<i>Neural Networks</i>, (61):85~117.<br />
|
|
Schmidhuber J.. 2015. “Deep Learning in Neural Networks: An Overview”<i>Neural Networks</i>, (61):85~117.<br />
|
[57] |
Schumaker R. P., Chen H.. 2009. “Textual Analysis of Stock Market Prediction Using Breaking Financial News: The AZFin Text System”<i>ACM Transactions on Information Systems</i> (TOIS), 27(2):12~40.<br />
|
|
Schumaker R. P., Chen H.. 2009. “Textual Analysis of Stock Market Prediction Using Breaking Financial News: The AZFin Text System”<i>ACM Transactions on Information Systems</i> (TOIS), 27(2):12~40.<br />
|
[58] |
Sharang A., Rao C.. 2015. “Using Machine Learning for Medium Frequency Derivative Portfolio Trading” arXiv preprint arXiv:1512.06228.<br />
|
|
Sharang A., Rao C.. 2015. “Using Machine Learning for Medium Frequency Derivative Portfolio Trading” arXiv preprint arXiv:1512.06228.<br />
|
[59] |
Shek H. H. S.. 2011. “Modeling High Frequency Market Order Dynamics Using Self-excited Point Process” Available at SSRN 1668160.<br />
|
|
Shek H. H. S.. 2011. “Modeling High Frequency Market Order Dynamics Using Self-excited Point Process” Available at SSRN 1668160.<br />
|
[60] |
Shen F., Chao J., and Zhao J.. 2015. “Forecasting Exchange Rate Using Deep Belief Networks and Conjugate Gradient Method”<i>Neurocomputing</i>, (167):243~253.<br />
|
|
Shen F., Chao J., and Zhao J.. 2015. “Forecasting Exchange Rate Using Deep Belief Networks and Conjugate Gradient Method”<i>Neurocomputing</i>, (167):243~253.<br />
|
[61] |
Sirignano J. A.. 2016. “Deep Learning for Limit Order Books” arXiv preprint arXiv: 1601.01987.<br />
|
|
Sirignano J. A.. 2016. “Deep Learning for Limit Order Books” arXiv preprint arXiv: 1601.01987.<br />
|
[62] |
Srivastava N., Hinton G. E., and Krizhevsky A., et al.. 2014. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”<i>Journal of Machine Learning Research</i>, 15(1):1929~1958.<br />
|
|
Srivastava N., Hinton G. E., and Krizhevsky A., et al.. 2014. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”<i>Journal of Machine Learning Research</i>, 15(1):1929~1958.<br />
|
[63] |
Takeuchi L., Lee Y. Y. A.. 2013. “Applying Deep Learning to Enhance Momentum Trading Strategies in Stocks” CS229, Stanford.<br />
|
|
Takeuchi L., Lee Y. Y. A.. 2013. “Applying Deep Learning to Enhance Momentum Trading Strategies in Stocks” CS229, Stanford.<br />
|
[64] |
Tan T. Z., Quek C., and Ng G. S.. 2007. “Biological Brain-inspired Genetic Complementary Learning for Stock Market and Bank Failure Prediction”<i>Computational intelligence</i>, 23(2):236~261.<br />
|
|
Tan T. Z., Quek C., and Ng G. S.. 2007. “Biological Brain-inspired Genetic Complementary Learning for Stock Market and Bank Failure Prediction”<i>Computational intelligence</i>, 23(2):236~261.<br />
|
[65] |
Wang W. Y., Hua Z.. 2014. “A Semiparametric Gaussian Copula Regression Model for Predicting Financial Risks from Earnings Calls” ACL, (1):1155~1165.<br />
|
|
Wang W. Y., Hua Z.. 2014. “A Semiparametric Gaussian Copula Regression Model for Predicting Financial Risks from Earnings Calls” ACL, (1):1155~1165.<br />
|
[66] |
Xiong R., Nicholas E. P., and Shen Y.. 2015. “Deep Learning Stock Volatilities with Google Domestic Trends” arXiv preprint arXiv:1512.04916.<br />
|
|
Xiong R., Nicholas E. P., and Shen Y.. 2015. “Deep Learning Stock Volatilities with Google Domestic Trends” arXiv preprint arXiv:1512.04916.<br />
|
[67] |
Yoshihara A., Fujikawa K., and Seki K., et al.. 2014. “Predicting Stock Market Trends by Recurrent Deep Neural Networks” Pacific Rim International Conference on Artificial Intelligence,Springer International Publishing,pp.759~769. <br />
|
|
Yoshihara A., Fujikawa K., and Seki K., et al.. 2014. “Predicting Stock Market Trends by Recurrent Deep Neural Networks” Pacific Rim International Conference on Artificial Intelligence,Springer International Publishing,pp.759~769. <br />
|
[68] |
Zhu C., Yin J., and Li Q.. 2014. “A Stock Decision Support System based on DBNs,”<i>Journal of Computational Information Systems</i>, 10(2):883~893.
|
|
Zhu C., Yin J., and Li Q.. 2014. “A Stock Decision Support System based on DBNs,”<i>Journal of Computational Information Systems</i>, 10(2):883~893.
|