|
|
Can Intelligent Manufacturing Empower Enterprise Innovation? A Quasi-Natural Experiment Based on China's Intelligent Manufacturing Demonstration Project |
YIN Hongying, LI Chuang
|
Business School, Soochow University; School of Accountancy, Shanghai University of Finance and Economics |
|
|
Abstract China's manufacturing industry remains large but not robust. To transition from a manufacturer of quantity to one of quality, China needs to promote new economic forces and enhance its capacity for independent innovation.Intelligent manufacturing is currently seen as the key to empowering business and fostering economic growth. The ensuing question is whether intelligent manufacturing can become a new driving force for increasing quality among Chinese manufacturing firms, and if so, through what mechanism it can do so. In accordance with the Announcement of the List of Pilot Demonstration Projects of Intelligent Manufacturing issued by the Ministry of Industry and Information Technology of the People's Republic of China, this paper uses the propensity score matching method with difference-in-differences to investigate the effect of intelligent manufacturing on enterprise innovation behavior and the mechanism. The results show the following: (1) Intelligent manufacturing promotes enterprise innovation, and the effect holds following a battery of endogeneity and robustness tests. (2) Intelligent manufacturing facilitates enterprise innovation through the information channel, the human capital channel, and the capital channel. Through the information channel, intelligent manufacturing fosters innovation by enhancing firms' information gathering and processing capabilities, which in turn boost the flow of information in the research and development system. Through the human capital channel, intelligent manufacturing improves innovation by improving employees' innovation ability through optimizing the organization's human capital structure, increasing employees' on-the-job training behavior, and establishing effective human-machine collaboration. Through the capital channel, intelligent manufacturing enhances innovation by optimizing the supply chain relationship, bank-enterprise interactions, and the acquisition of legislative subsidies, thereby expanding the organization's innovation resources. (3) The innovation structure analysis shows that intelligent manufacturing can optimize the enterprise innovation structure and improve enterprise innovation quality. In particular, implementing intelligent manufacturing can foster enterprises' joint innovation, optimize the quality of enterprise innovation, and increase the number of patents cited by enterprises. (4) Based on the enterprise, industry, and market heterogeneity analyses, this paper shows that the positive effects of intelligent manufacturing on enterprise innovation are more pronounced for enterprises that are larger, non-state-owned, labor-intensive, in a highly competitive industry, and located in an area with a high level of intellectual property rights protection. (5) The value effect shows that intelligent manufacturing enables enterprise innovation to improve the current and future performance of enterprises, thus enhancing their long-term potential. This paper's contribution is mostly evident in the following three areas:First, this paper broadens the research paradigm related to the practical effect of intelligent manufacturing. Research on intelligent manufacturing lacks both a theoretical model and an empirical test. Based on the quasi-natural experiment of China's intelligent manufacturing demonstration project, this paper establishes a link between technology promotion and enterprise innovation and supplements and enriches research on the economic effects of intelligent manufacturing. Second, this paper enriches the literature on the factors that affect enterprise innovation. There are abundant studies on the factors influencing enterprise innovation, but few that examine the impact of the combination of informatization and industrialization on innovation behavior from the standpoint of information technology development. Against the backdrop of worldwide initiatives to promote intelligent manufacturing, it is crucial to investigate this topic. Finally, this paper offers guidance for and practical insight into the implementation and development of intelligent manufacturing. This paper examines the effects of the promotion and characteristics of intelligent manufacturing on the influencing mechanism and regulating factors of enterprise innovation. The results have practical implications for promoting China's national policy on intelligent manufacturing and the transformation and upgrading of enterprises.
|
Received: 02 March 2022
Published: 01 November 2022
|
|
|
|
[1] |
白重恩、刘俏、陆洲、宋敏和张俊喜,2005,《中国上市公司治理结构的实证研究》,《经济研究》第2期,第81~91页。
|
[2] |
蔡晓慧和茹玉骢,2016,《地方政府基础设施投资会抑制企业技术创新吗?——基于中国制造业企业数据的经验研究》,《管理世界》第11期,第32~52页。
|
[3] |
陈彦斌、林晨和陈小亮,2019,《人工智能、老龄化与经济增长》,《经济研究》第7期,第47~63页。
|
[4] |
程学旗、靳小龙、王元卓、郭嘉丰、张铁赢和李国杰,2014,《大数据系统和分析技术综述》,《软件学报》第9期,第1889~1908页。
|
[5] |
解维敏和方红星,2011,《金融发展、融资约束与企业研发投入》,《金融研究》第5页,第171~183页。
|
[6] |
黎文靖和郑曼妮,2016,《实质性创新还是策略性创新?——宏观产业政策对微观企业创新的影响》,《经济研究》第4期,第60~73页。
|
[7] |
李莉、闫斌和顾春霞,2014,《知识产权保护、信息不对称与高科技企业资本结构》,《管理世界》第11期,第1~9页。
|
[8] |
李志赟,2002,《银行结构与中小企业融资》,《经济研究》第6期,第38~45+94页。
|
[9] |
林毅夫和李永军,2001,《中小金融机构发展与中小企业融资》,《经济研究》第1期,第10~18+53~93页。
|
[10] |
刘飞和田高良,2019,《信息技术是否替代了就业——基于中国上市公司的证据》,《财经科学》第7期,第95~107页。
|
[11] |
刘维刚和倪红福,2018,《制造业投入服务化与企业技术进步:效应及作用机制》,《财贸经济》第8期,第126~ 140页。
|
[12] |
吕铁和韩娜,2015,《智能制造:全球趋势与中国战略》,《人民论坛·学术前沿》第11期,第6~17页。
|
[13] |
孟庆斌、李昕宇和张鹏,2019,《员工持股计划能够促进企业创新吗?——基于企业员工视角的经验证据》,《管理世界》第11期,第209~228页。
|
[14] |
孟庆玺、白俊和施文,2018,《客户集中度与企业技术创新:助力抑或阻碍——基于客户个体特征的研究》,《南开管理评论》第4期,第62~73页。
|
[15] |
潘越、潘健平和戴亦一,2015,《公司诉讼风险、司法地方保护主义与企业创新》,《经济研究》第3期,第131~145页。
|
[16] |
潘越、汤旭东、宁博和杨玲玲,2020,《连锁股东与企业投资效率:治理协同还是竞争合谋》,《中国工业经济》第2期,第136~164页。
|
[17] |
权小锋和尹洪英,2017,《中国式卖空机制与公司创新——基于融资融券分步扩容的自然实验》,《管理世界》第1期,第128~144+187~188页。
|
[18] |
沈国兵和袁征宇,2020,《互联网化、创新保护与中国企业出口产品质量提升》,《世界经济》第11期,第127~151页。
|
[19] |
孙早和侯玉琳,2019,《工业智能化如何重塑劳动力就业结构》,《中国工业经》第5期,第61~79页。
|
[20] |
王迪、刘祖基和赵泽朋,2016,《供应链关系与银行借款——基于供应商/客户集中度的分析》,《会计研究》第10期,第42~49+96页。
|
[21] |
王珂,2021,《人工智能在实现“两个必然”中的作用及启示——基于生产方式变革的考察视角》,《马克思主义研究》第9期,第101~109页。
|
[22] |
王可和李连燕,2018,《“互联网+”对中国制造业发展影响的实证研究》,《数量经济技术经济研究》第6期,第3~20页。
|
[23] |
王铁男和王宇,2017,《信息技术投资、CEO过度自信与公司绩效》,《管理评论》第1期,第70~81页。
|
[24] |
魏志华、曾爱民和李博,2014,《金融生态环境与企业融资约束——基于中国上市公司的实证研究》,《会计研究》第5期,第73~80+95页。
|
[25] |
吴超鹏和唐菂,2016,《知识产权保护执法力度、技术创新与企业绩效——来自中国上市公司的证据》,《经济研究》第7期,第125~139页。
|
[26] |
肖红军、阳镇和刘美玉,2021,《企业数字化的社会责任促进效应:内外双重路径的检验》,《经济管理》第11期, 第52~69页。
|
[27] |
杨德明和刘泳文,2018,《“互联网+”为什么加出了业绩》,《中国工业经济》第5期,第80~98页。
|
[28] |
张杰和郑文平,2018,《创新追赶战略抑制了中国专利质量么?》,《经济研究》第5期,第28~41页。
|
[29] |
赵杨和赵泽明,2018,《互动式信息披露:文献回顾与研究展望》,《科学决策》第11期,第74~94页。
|
[30] |
Arrow, J. , 1962, “The Economic Implications of Learning by Doing”, Review of Economic Studies,29(3):155~173.
|
[31] |
Bertrand, M. , and S. Mullainathan, 2003, “Enjoying the Quiet Life? Corporate Governance and Managerial Preferences”, Journal of political Economy, 111(5): 1043~1075.
|
[32] |
Cannon, M. D. , and A. C. Edmondson, 2005, “Failing to Learn and Learning to Fail (Intelligently) : How Great Organizations Put Failure to Work to Innovate and Improve”, Long Range Planning, 38(3): 299~319.
|
[33] |
Dosi, G. ,L. Marengo, and C. Pasquali, 2006, “How much should Society Fuel the Greed of Innovators?: On the Relations between Appropriability, Opportunities and Rates of Innovation”, Research Policy, 35(8): 1110~1121.
|
[34] |
Fritsch, M. , and G. Franke, 2004, “Innovation, Regional Knowledge Spillovers and R&D Cooperation”, Research Policy, 33(2):245~255.
|
[35] |
Garcia-Dastugue, S. J. , and D. M. Lambert, 2003, “Internet-enabled Coordination in the Supply Chain”, Industrial Marketing Management, 32(3): 251~263.
|
[36] |
Goldfarb, A. and C. Tucker, 2019, “Digital Economics”, Journal of Economic Literature, 57(1): 3~43.
|
[37] |
Gómez, J. , I. Salazar, and P. Vargas, 2017, “Does Information Technology Improve Open Innovation Performance? An Examination of Manufacturers in Spain”, Information Systems Research, 28(3): 661~675.
|
[38] |
Gupta, A. K. , S. P. Raj,and D. L. Wilemon, 1985, “R&D and Marketing Dialogue in High-Tech Firms”, Industrial Marketing Management, 14(4): 289~300.
|
[39] |
Hsu, P. H. , X. Tian. and Y. Xu, 2014, “Financial Development and Innovation: Cross-Country Evidence”, Journal of Financial Economics, 112(1):116~135.
|
[40] |
Kaplan, S. N. and L. Zingales, 1997, “Do Investment-Cash Flow Sensitivities Provide Useful Measures of Financing Constraints?” , The Quarterly Journal of Economics, 112(1):169~215.
|
[41] |
Li, B. H. , B. C. Hou, W. T. Yu, X. B. Lu, and C. W. Yang, 2017, “Applications of Artificial Intelligence in Intelligent Manufacturing: A Review”, Frontiers of Information Technology & Electronic Engineering, 18(1): 86~96.
|
[42] |
Mourtzis, D. , 2011, “Internet Based Collaboration in the Manufacturing Supply Chain”, CIRP Journal of Manufacturing Science and Technology, 4(3): 296~304
|
[43] |
Nambisan, S. , 2003, “Information Systems as a Reference Discipline for New Product Development”, MIS Quarterly, 27(1):1~18.
|
[44] |
Nambisan, S. , K. Lyytinen, A. Majchrzak, and M. Song, 2017, “Digital Innovation Management: Reinventing Innovation Management Research in a Digital World.”, MIS Quarterly, 41(1).
|
[45] |
Nazarov, Z. , and A. Akhmedjonov, 2012, “Education, on-the-job Training, and Innovation in Transition Economies”, Eastern European Economics, 50(6): 28~56.
|
[46] |
Rai, A. , P. Constantinides, and S. Sarker, 2019, “Next Generation Digital Platforms: Toward Human-AI Hybrids”, MIS Quarterly, 43(1): iii-ix.
|
[47] |
Romer, P. M. , 1990, “Endogenous Technological Change”, Journal of Political Economy, 98(5,Part 2): S71~S102.
|
[48] |
Schilling, M. A. , and C. C. Phelps, 2007, “Inter Firm Collaboration Networks: The Impact of Large~Scale Network Structure on Firm Innovation”, Management Science, 53(7):1113~1126.
|
[49] |
Sieg, J. H. , M. W. Wallin, and G. Von Krogh, 2010, “Managerial Challenges in Open Innovation: A Study of Innovation Inter mediation in the Chemical Industry”, R&D Management, 40(3): 281~291.
|
[50] |
Wu, L. , L. Hitt, and B. Lou, 2020, “Data Analytics, Innovation, and Firm Productivity”, Management Science, 66(5): 2017~2039.
|
|
|
|